主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2023, Vol. 48 ›› Issue (15): 73-81.DOI: 10.16638/j.cnki.1671-7988.2023.015.013

• Intelligent Connected Vehicle • Previous Articles    

Application of Continuous Learning Algorithm in Vehicle Target Recognition

SUN Jiahui, MA Liming   

  1. School of Automobile, Chang'an University
  • Online:2023-08-15 Published:2023-08-15
  • Contact: SUN Jiahui

持续学习算法在车辆目标识别上的应用

孙家辉,马骊溟   

  1. 长安大学 汽车学院
  • 通讯作者: 孙家辉
  • 作者简介:孙家辉(1998-),男,硕士研究生,研究方向为智能车辆目标识别,E-mail:937351247@qq.com。

Abstract: Advances in deep learning and artificial intelligence are the main drivers of autonomous vehicle technology. However, most of the deep learning models are trained on the same staticdistributed data set and their behaviors can not be adaptde or expended over time. To solve this problem, the continuous learning model is applied in the field of vehicle object recognition. Firstly, an environment is built to make the algorithm run smoothly, and the original image data set of target recognition is selected. On the basis of analyzing the existing evaluation indexes, the evaluation indexes suitable for this experiment are selected, and convolutional neural network (CNN), nearest class mean (NCM), incremental classifier and representation learning (iCaRL) three continuous learning algorithms are used for learning, training and comparing the original image data set. Based on the experiment result, the iCaRL algorithm makes the accuracy and efficiency of machine continuous learning training better than the other two methods. Aiming at the problem that the image data set of intelligent driving target recognition is not perfect, a new image data set is constructed, including vehicles, pedestrians, traffic signs and signal lights. ICaRL algorithm is applied to the new image data set for research, and the new intelligent draving image dataset is trained and tested. The results show that iCaRL algorithm can learn the new image data in the environment. The test results show that the method can be used for target recognition in intelligent driving field.

Key words: Continual learning; ICaRL algorithm; Vehicle target recognition; Image dataset

摘要: 自动驾驶汽车技术的日新月异,主要得益于深度学习和人工智能的进步。然而深度学 习模型大多是在静态同分布数据集上进行训练,无法随着时间而适应或扩展其行为。针对这 一问题,论文将持续学习模型运用于车辆目标识别领域进行研究。首先搭建可以使得算法流 畅运行的环境,选定目标识别的原始图像数据集;在分析现有评估指标的基础上,选取适合 于本次实验的评估指标,并采用卷积神经网络(CNN)、最接近类均值(NCM)、增量分类器 与特征表示(iCaRL)三种持续学习算法对原始图像数据集进行学习训练与对比验证,通过实 验验证了应用 iCaRL 算法使机器进行持续学习训练时,其精度和效率均优于其他两种方法。 针对智能驾驶目标识别图像数据集不完善这一问题,构建了一个新的图像数据集,包含车辆、 行人、交通标志及信号灯,将 iCaRL 算法应用于新建图像数据集进行研究,并在新建智能驾 驶图像数据集上进行了训练与测试。结果表明,采用 iCaRL 算法能够较好地学习新建图像数 据集,不会因为环境的改变而使得其性能发生大幅变化,测试结果良好,证明该方法可以在 智能驾驶领域进行目标识别。

关键词: 持续学习;iCaRL 算法;车辆目标识别;图像数据集