主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2025, Vol. 50 ›› Issue (5): 27-34.DOI: 10.16638/j.cnki.1671-7988.2025.005.005

• New Energy Vehicle • Previous Articles    

Research on Composite Braking Control of Distributed Drive Electric Vehicles

WU Di, ZHAO Fei   

  1. School of Automobile and Transportation Engineering, Hefei University of Technology
  • Published:2025-03-12
  • Contact: WU Di

分布式驱动电动汽车复合制动控制研究

吴迪,赵飞   

  1. 合肥工业大学 汽车与交通工程学院
  • 通讯作者: 吴迪
  • 作者简介:吴迪(1987-),男,博士,讲师,研究方向为新能源汽车,E-mail:wu85@hfut.edu.cn

Abstract: A composite braking control strategy is introduced for distributed drive electric vehicles, which takes yaw stability and braking energy recovery into consideration, capitalizing on the independent control capabilities of four-wheel motor braking torque and friction braking torque. This strategy adopts a hierarchical control framework, with the upper-level controller comprising a proportion-integration-differentiation (PID) based longitudinal speed tracking controller and a yaw moment controller grounded in model predictive control. The lower-level controller optimizes tire utilization through quadratic programming to allocate the braking torques among the four wheels, determining the motor braking force ratio coefficient based on factors such as braking intensity, battery state of charge (SOC), and vehicle speed, and subsequently calculating the motor braking torque and friction braking torque. Ultimately, a co-simulation model is built using MATLAB/ Simulink and CarSim to perform simulation tests under cornering braking scenarios. The simulation outcomes demonstrate that the proposed control strategy ensures vehicle braking stability while enhancing braking energy recovery efficiency.

Key words: distributed driver; braking energy recovery; yaw stability; hierarchical control

摘要: 针对分布式驱动电动汽车四轮电机制动力矩和摩擦制动力矩可独立控制的特点,提出 一种综合考虑横摆稳定性与制动能量回收的复合制动控制策略。该策略采用分层控制结构, 上层控制器包括基于比例-积分-微分(PID)控制的纵向速度跟踪控制器和基于模型预测控制 的横摆力矩控制器。下层控制以轮胎利用率为优化目标,通过二次规划方法完成四轮制动力 矩分配,以制动强度、电池荷电状态(SOC)值、车速为影响因子求解电机制动力占比系数, 从而获得电机制动力矩以及摩擦制动力矩。最后,基于 MATLAB/Simulink 和 CarSim 搭建联 合仿真模型,在转弯制动工况下进行仿真试验,仿真结果表明,提出的控制策略能够保证车 辆制动稳定性的同时提高制动能量回收效果。

关键词: 分布式驱动;制动能量回收;横摆稳定性;分层控制