主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2024, Vol. 49 ›› Issue (23): 49-54.DOI: 10.16638/j.cnki.1671-7988.2024.023.010

• Intelligent Connected Vehicle • Previous Articles    

Traffic Light Detection Method Based on YOLOv8 and Re-identification Using SVDD

YU Yang, HE Liu   

  1. Sichuan Provincial Key Laboratory of Vehicle Measurement, Control and Safety Xihua University
  • Published:2024-12-05
  • Contact: HE Liu

基于 YOLOv8 和 SVDD 重识别的交通 信号灯检测方法

余杨,何刘   

  1. 西华大学 汽车测控与安全四川省重点实验室
  • 通讯作者: 何刘
  • 作者简介:余杨(1996-),女,硕士研究生,研究方向为自动驾驶、计算机视觉,E-mail:gzzyyuyang321@163.com 通信作者:何刘(1990-),男,博士,讲师,研究方向为车辆结构安全数据的智能分析与挖掘、智能图像识别与激光 辅助视觉重建,E-mail:aresmiki@163.com

Abstract: To improve the detection accuracy and recognition precision of traffic lights, this paper proposes an SVDD-YOLOv8 target detection method based on YOLOv8. This method enhances feature capture and reconfirms targets by integrating the global attention mechanism (GAM) and support vector data description (SVDD) classification module. Meanwhile, the embedding intersection over union (EIoU) loss function is introduced to improve positioning accuracy. The abnormal areas identified by SVDD are retrained to enhance the model's performance. Experiments show that this method improves detection accuracy and mAP@0.5 by 7.75% and 8.99%, respectively, compared to YOLOv8, demonstrating the effectiveness of this approach in improving traffic light detection accuracy and anti-interference ability.

Key words: traffic lights; target detection; SVDD; YOLOv8; EIoU

摘要: 为提升交通信号灯的检测精度和识别准确率,文章提出基于 YOLOv8 的 SVDD-YOLOv8 目标检测方法,该方法通过整合全局注意力机制(GAM)和支持向量数据描述(SVDD)分 类模块,强化特征捕捉并二次确认目标,同时引入 EIoU 损失函数提高定位精度。对 SVDD 别出的异常区域进行再训练,提升模型性能。实验显示,该方法较 YOLOv8 在检测精度和 mAP@0.5 上分别提升 7.75%和 8.99%,证明了该方法在提高交通信号灯检测精度和抗干扰能 力上的有效性。

关键词: 交通信号灯;目标检测;SVDD;YOLOv8;EIoU