[ 1 ] HE M, HE D. A New Hybrid Deep Signal Processing
Approach for Bearing Fault Diagnosis Using Vibration Signals[J].Neurocomputing,2020,396(Jul5):542-
555.
[ 2 ] JIA F, LEI Y, LIN J, et al. Deep Neural Networks: A
Promising Tool for Fault Characteristic Mining and
Intelligent Diagnosis of Rotating Machinery with
Massive Data[J].Mechanical Systems & Signal Processing,2016,72:303-315.
[ 3 ] LEI Y, JIA F, LIN J, et al. An Intelligent Fault
Diagnosis Method Using Unsupervised Feature
Learning Towards Mechanical Big Data[J]. IEEE
Transactions on Industrial Electronics,2016,63(5):
3137-3147.
[ 4 ] 喻洋洋,周凤星,严保康.基于 LabVIEW 的滚动轴承
故障诊断系统[J].仪表技术与传感器,2016(3):74-76,85.
[ 5 ] 卓兴成,童一飞,李东波.基于 LabVIEW 的轴承振动
信号分析系统设计与开发[J].机械设计与制造工程,
2019,48(1):55-59.
[ 6 ] Case Western Reserve University. Seeded Foult Test
Data[EB/0L].[2022-02-18].https://csegroups.case. edu/
bearingdatacenter/.