主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2025, Vol. 50 ›› Issue (6): 65-74.DOI: 10.16638/j.cnki.1671-7988.2025.006.011

• Intelligent Connected Vehicle • Previous Articles    

Research on the Application of YOLO Object Detection Algorithm in Autonomous Driving Scenarios

FANG Hongsu1 , CHANG Cheng1 , SHI Xinyu 2 , XIONG Runlian1 , HE Mentao1   

  1. 1.School of Automobile, Chang'an University; 2.School of Information Engineering, Chang'an University
  • Published:2025-03-26
  • Contact: FANG Hongsu

自动驾驶场景中 YOLO 目标检测算法的 应用研究

方虹苏 1,常城 1,石鑫雨 2,熊润莲 1,贺门涛 1   

  1. 1.长安大学 汽车学院;2.长安大学 信息工程学院
  • 通讯作者: 方虹苏
  • 作者简介:方虹苏(2001-),男,硕士研究生,研究方向为深度学习

Abstract: With the rapid development of autonomous driving technology, accurate and efficient object detection has become a key research direction in environmental perception technology. The you only look once (YOLO) series algorithm, as a single-stage algorithm, has shown great potential not only in autonomous driving, but also widely applied in various fields. This article first summarizes the object detection algorithms based on deep learning and reviews the development history of YOLO algorithm; afterwards, the commonly used evaluation indicators in the field of object detection are outlined, and the application of YOLOv1 to YOLOv10 algorithms in autonomous driving scenarios is discussed, with a focus on analyzing the application of YOLO algorithm in traffic sign, vehicle and pedestrian, road surface status, and lane lines detection; finally,looks forward to the development trends and potential optimization directions of YOLO detection algorithm in the field of autonomous driving in the future.

Key words: autonomous driving; object detection; YOLO algorithm; deep learning

摘要: 随着自动驾驶技术的迅速发展,准确高效的目标检测已成为环境感知技术中的关键研 究方向。YOLO 系列算法作为一种单阶段算法,不仅在自动驾驶中展现了巨大的潜力,还被 广泛应用于各个领域。文章首先总结了基于深度学习的目标检测算法,并回顾了 YOLO 算法 的发展历程;然后,概述了目标检测领域常用的评估指标,并讨论了 YOLOv1 至 YOLOv10 算法在自动驾驶场景中的应用,重点分析了 YOLO 算法在交通标志、车辆与行人、路面状态 及车道线检测中的应用情况。最后,展望了 YOLO 检测算法在未来自动驾驶领域的发展趋势 及潜在优化方向。

关键词: 自动驾驶;目标检测;YOLO 算法;深度学习