主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2024, Vol. 49 ›› Issue (5): 176-181.DOI: 10.16638/j.cnki.1671-7988.2024.005.036

• Standards·Regulations·Management • Previous Articles    

Research Progress of Real-time Accident Prediction Methods Based on Neural Networks

YAN Tiance   

  1. School of Automobile, Chang'an University, Xi'an 710064, China
  • Published:2024-03-14
  • Contact: YAN Tiance

基于神经网络的实时事故预测方法研究进展

炎天策   

  1. 长安大学 汽车学院
  • 通讯作者: 炎天策
  • 作者简介:炎天策(1998-),男,硕士研究生,研究方向为实时事故预测,E-mail:1072718113@qq.com。

Abstract: As an important part of active road safety management, road traffic accident prediction plays an important role in reducing the probability of accidents and helping managers make safety decisions. With the increasing demand for data, traditional methods can no longer meet the needs of big data, and machine learning and artificial intelligence algorithms have shown strong potential in the field of road traffic accident prediction in dynamic, real-time and complex situations. This paper introduces the data acquisition and the selection of characteristic variables, describes in detail the relevant research of the neural network based on machine learning and the combination of the method with deep learning at home and abroad, analyzes the advantages and disadvantages of using the neural network correlation method in modeling, and finally summarizes and looks forward to the realtime traffic accident prediction method based on neural network, and gives the future development trend.

Key words: Traffic engineering; Real-time accident prediction; Neural network; Deep learning

摘要: 道路交通事故预测作为道路主动安全管理的重要组成部分,在降低事故发生概率、帮 助管理者制定安全决策等方面起着重要作用。随着数据需求的不断增加,传统方法已无法满 足大数据的需求,机器学习和人工智能算法在动态、实时和复杂情况下的道路交通事故预测 领域显示出强大的潜力。文章从数据获取和特征变量选择开始介绍,详细叙述了基于机器学 习的神经网络及与深度学习结合后该方法在国内外的相关研究,分析了使用神经网络相关方 法在建模时会面临的优缺点,最后对基于神经网络的交通实时事故预测方法进行了总结及展 望,给出未来的发展趋势。

关键词: 交通工程;实时事故预测;神经网络;深度学习