主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2023, Vol. 48 ›› Issue (23): 6-13.DOI: 10.16638/j.cnki.1671-7988.2023.023.002

• New Energy Vehicle • Previous Articles    

The SOC Estimation Based on Improved Extended Kalman Filter Algorithm

HU Kun1, ZHANG Bingzhan*1,2, LIU Zhongtao1, WANG Yongjia1, ZHU Maofei3,4   

  1. 1.School of Automotive and Traffic Engineering, Hefei University of Technology; 2.National Local Joint Engineering Research Center for Automotive Technology and Equipment; 3.College of Advanced Manufacturing Engineering, Hefei College; 4.Anhui Intelligent Vehicle Control and Integrated Design Technology Engineering Research Center
  • Online:2023-12-15 Published:2023-12-15
  • Contact: ZHANG Bingzhan

基于改进扩展卡尔曼滤波算法的 SOC 估算

胡 坤 1,张冰战*1,2,刘忠涛 1,汪永嘉 1,朱茂飞 3,4   

  1. 1.合肥工业大学 汽车与交通工程学院;2.安徽省数字化设计与 制造重点实验室;3.合肥学院 先进制造工程学院; 4.安徽省智能车辆控制与集成设计技术工程研究中心
  • 通讯作者: 张冰战
  • 作者简介:胡坤(1995-),男,硕士研究生,研究方向为新能源汽车技术,E-mail:964015301@qq.com。 通信作者:张冰战(1982-),男,博士,副教授,研究方向为动力系统及其控制技术,E-mail:zhangbingzhan@hfut.edu.cn。
  • 基金资助:
    中央高校基本科研业务费专项资金资助(PA2023GDSK0065)。

Abstract: In the fields of electric vehicles, energy storage systems and mobile devices, the battery management system is one of the key technologies to ensure the performance and safety of the battery pack. The state of charge (SOC) is estimated to be an important part of it. The research of the article focuses on the lithium-iron phosphate battery of 18650 models, which is based on the estimation of the SOC of the single battery. First of all, select the dual-order remote control (RC) model as the battery model and determine the dynamic parameters of the dual-order RC model through the battery capacity calibration experiment, the open circuit voltage (OCV)-SOC calibration experiment and the hybrid pulse power characteristic (HPPC) experiment. The power battery simula- tion model is built in MATLAB/Simulink, and the reliability of the selected model is verified. Then, in order to solve the problem of accuracy and cost of the single battery SOC estimation, based on the extended Kalman filter (EKF) algorithm, a improvement method is proposed, that is, the time- varying fade factor is introduced when predicting the error covariance matrix of the time step k, and the adaptive molecule is introduced when the variance Q and R are updated. Finally, the simulation analysis of the proposed algorithm is carried out under different cyclic conditions. Through comparison, the proposed algorithm improves the accuracy of SOC estimation and has strong practicality.

Key words: Lithium-ion battery; Extended Kalman filter algorithm; Dual-order RC model; SOC estimation; Parameter identification

摘要: 在电动车、储能系统和移动设备等领域中,电池管理系统是保障电池组性能和安全性 的关键技术之一,而电池荷电状态(SOC)估算是其重要的组成部分。文章重点针对 18650 型号的磷酸铁锂电池(单体电池)SOC 估算展开研究和设计,首先选择双阶远程控制(RC) 模型作为电池模型,通过电池容量标定实验、开路电压(OCV)-SOC 标定实验、混合功率脉 冲特性(HPPC)实验确定了双阶 RC 模型的各个动态参数,在 MATLAB/Simulink 中搭建动 力电池仿真模型,验证了所选模型的可靠性。然后,为了解决单体电池 SOC 估算精度和成本 等问题,以扩展卡尔曼滤波(EKF)算法为基础提出了一种改进方法,即在预测第 k 个时间 步的误差协方差矩阵时,引入了时变渐消因子,在更新方差 Q 和 R 时引入自适应分子。最后, 通过不同循环工况对提出的算法进行仿真分析,结果显示,提出的算法提升了 SOC 估算的精 度,实用性强。

关键词: 锂离子电池;卡尔曼滤波算法;双阶 RC 模型;SOC 估算;参数辨识