主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

Automobile Applied Technology ›› 2023, Vol. 48 ›› Issue (22): 178-182.DOI: 10.16638/j.cnki.1671-7988.2023.022.035

• Standards·Regulations·Management • Previous Articles    

Short Cycle Traffic Vehicle Flow Prediction Method for Traffic Intersections Based on CNN-ARIMA

BAO Wenhua, LIU Hairui, FANG Yuan, WANG Chengdong*   

  1. Anhui Institute of Information Technology
  • Online:2023-11-30 Published:2023-11-30
  • Contact: WANG Chengdong

基于 CNN-ARIMA 的交通路口短周期交通车 流量预测方法

包文华,刘海瑞,方 圆,王成栋*   

  1. 安徽信息工程学院
  • 通讯作者: 王成栋
  • 作者简介:包文华(2001-),男,研究方向为车联网智慧交通、大数据分析预测,E-mail:whbao1314@163.com。 通信作者:王成栋(1991-),男,硕士,助教,研究方向为车联网智慧交通,E-mail:cdwang2@iflytek.com。
  • 基金资助:
    安徽高校自然科学研究一般项目资助、安徽信息工程学院青年科研基金项目资助(22QNJJKJ006);安徽信 息工程学院国家级大学生创新创业训练计划项目(202213613007);安徽信息工程学院省级大学生创新创业 训练计划项目(S202213613047)。

Abstract: Aiming at the problems of low accuracy and unstable data of existing prediction models in the process of intelligent traffic vehicle flow prediction, this paper proposes a short-period traffic flow prediction method based on the combination of convolutional neural network (CNN) and time series prediction model auto regressive integrated moving average (ARIMA). In this paper, the historical traffic flow data of Wangxi road intersection in Wuhu city within a week is taken as the sample to predict the traffic vehicle flow in the next time period, and the obtained data are normalized and simulated. The simulation results show that the scheme can be applied to traffic control, and the scheme can effectively maintain a high accuracy without being affected by the size of the data set, and the prediction results can provide a better solution to the problem of vehicle congestion in advance.

Key words: Intelligent transportation; Traffic intersections; Short cycle; Traffic vehicle flow predic- tion; CNN-ARIMA; Prediction method

摘要: 针对现有预测模型在智慧交通车流量预测过程中准确度较低、数据不平稳的问题,文 章提出了一种基于卷积神经网络(CNN)和时间序列预测模型自回归差分移动平均(ARIMA) 相结合的短周期交通车流量预测方法。文章以芜湖市汪溪路路口一周内的历史车流量数据为 样本去预测下一时间周期的交通车流量,将得到的数据经过归一化处理后模拟仿真实验,仿 真结果表明,该方案能够运用于交通管控中,且能有效保持较高精确率而不受数据集大小的 影响,其预测结果可以为车辆拥堵问题提供较好的提前应对方案。

关键词: 智慧交通;交通路口;短周期;交通车流量;CNN-ARIMA;预测方法