Automobile Applied Technology ›› 2022, Vol. 47 ›› Issue (20): 5-8.DOI: 10.16638/j.cnki.1671-7988.2022.020.002
• New Energy Vehicle • Previous Articles
TIAN Zejie
Online:
Published:
Contact:
田泽杰
通讯作者:
作者简介:
Abstract: Aiming at the energy management problem of plug-in hybrid electric vehicles, a strategy based on the Q-learning algorithm in reinforcement learning is proposed. Take battery state of charge and required power as state variables, take auxiliary power unit output power as control variable, and use Temporal-Difference Learning algorithm to update the action-state value in real time. Comparing the results with the global optimal algorithm pontryagin minimum principle, the total price of the Q-learning strategy is only 1.57 yuan more expensive under the Chinese type city bus circle of nearly 100 kilometers, which shows the effectiveness of the Q-learning strategy. From the perspective of application, this strategy is conducive to improving the overall economic level of vehicle.
Key words: Plug-in hybrid electric vehicles; Reinforcement learning; Q-learning; Energy management strategy
摘要: 针对插电式混合动力汽车的能量管理问题,提出一种基于强化学习中 Q-learning 算法 的策略。以电池荷电状态和需求功率为状态变量,以动力辅助单元输出功率为控制变量,并 采用时序差分算法实时更新动作-状态值。将结果与全局最优算法庞特里亚金极小值原理对 比,在近百公里的中国典型城市客车工况下,Q-learning 策略的总价格仅贵出 1.57 元,表明 了基于 Q-learning 策略的有效性。从应用角度出发,该策略有利于提升车辆整体经济水平。
关键词: 插电式混合动力汽车;强化学习;Q-learning;能量管理策略
TIAN Zejie. Energy Management Strategy of Plug-in Hybrid Electric Vehicles Based on Q-learning[J]. Automobile Applied Technology, 2022, 47(20): 5-8.
田泽杰. 基于 Q-learning 的插电式混合动力 汽车能量管理策略[J]. 汽车实用技术, 2022, 47(20): 5-8.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.aenauto.com/EN/10.16638/j.cnki.1671-7988.2022.020.002
http://www.aenauto.com/EN/Y2022/V47/I20/5