主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2025, Vol. 50 ›› Issue (4): 20-26.DOI: 10.16638/j.cnki.1671-7988.2025.004.004

• 智能网联汽车 • 上一篇    

融合改进 A*算法与动态窗口法的无人车路径规划研究

何洋,余孝楠*   

  1. 辽宁工业大学 汽车与交通工程学院
  • 发布日期:2025-02-25
  • 通讯作者: 余孝楠
  • 作者简介:何洋(1982-),男,博士,副教授,研究方向为智能驾驶技术,E-mail:heyang121000@163.com 通信作者:余孝楠(1997-),男,硕士研究生,研究方向为智能驾驶技术,E-mail:yuxiansen97@163.com
  • 基金资助:
    2024 年辽宁省教育厅高等学校基本科研项目(LJ212410154021)

Research on Path Planning of Unmanned Vehicles by Integrating Improved A * Algorithm and Dynamic Window Approach

HE Yang, YU Xiaonan*   

  1. College of Automobile and Traffic Engineering, Liaoning University of Technology
  • Published:2025-02-25
  • Contact: YU Xiaonan

摘要: 针对传统 A *算法在无人车路径规划中搜索效率低、冗余节点及避障灵活性差等问题, 提出一种融合改进 A *与动态窗口法的无人车路径规划方法。仿真结果表明,对比传统 A *算法, 改进 A *算法在搜索时间平均减少了 66.81%,转折次数平均减少了 43.65%,遍历节点数平均 减少了 46.73%,路径长度平均减少了 2.55%,融合算法能在全局最优路径的基础上,达到随 机避障效果。

关键词: 无人车;路径规划;A *算法;动态窗口法

Abstract: Aiming at the issues like low search efficiency, redundant nodes and poor obstacle avoidance flexibility of the traditional A* algorithm in the path planning of unmanned vehicles, a method of integrating improved A* and dynamic window approach for unmanned vehicle path planning is proposed. The simulation results show that compared with the traditional A* algorithm, the improved A* algorithm reduces the average search time by 66.81%, the average turn times by 43.65%, the average number of traversing nodes by 46.73%, and the average path length by 2.55%. The fusion algorithm can achieve random obstacle avoidance based on the global optimal path.

Key words: unmanned vehicle; path planning; A* algorithm; dynamic window approach