Automobile Applied Technology ›› 2022, Vol. 48 ›› Issue (6): 136-139.DOI: 10.16638/j.cnki.1671-7988.2023.06.028
• Testing and Experiment • Previous Articles
FU Kai
Online:
Published:
Contact:
符 凯
通讯作者:
作者简介:
Abstract: Vehicle in the long downhill section of the driving process, the road longitudinal slope of the vehicle longitudinal force analysis is particularly important, when the road slope over the conference will affect the driving safety of the vehicle, but the longitudinal slope of the road is difficult to obtain through the sensor direct measurement, real-time acquisition of the longitudinal slope of the road can provide a basis for optimizing the long downhill of the vehicle, this paper proposes based on the adaptive extension of the Kalman filter algorithm real-time estimation of the longitudinal slope of the road, and simulation experiments, the results show that this method has a strong accuracy and real-time.
Key words: Road longitudinal slope; Kalman filter algorithm; Driving safety; Simulation experiments
摘要: 车辆在长下坡路段行驶过程中,道路纵向坡度对汽车纵向受力分析时尤为重要,当道 路坡度过大会时会影响汽车的行驶安全性。然而道路纵向坡度很难通过传感器直接测量获得, 实时获取道路纵向坡度可以为优化车辆长大下坡提供依据,文章提出基于自适应扩展卡尔曼 滤波算法实时估计道路纵向坡度,并进行仿真试验,结果表明,此方法有很强的准确性和实 时性。
关键词: 道路纵向坡度;卡尔曼滤波算法;行驶安全性;仿真试验
FU Kai. Road Longitudinal Slope Estimation Based on Adaptive Extended Kalman Filter Algorithm[J]. Automobile Applied Technology, 2022, 48(6): 136-139.
符 凯. 基于自适应扩展卡尔曼滤波算法的道路 纵向坡度估计[J]. 汽车实用技术, 2022, 48(6): 136-139.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.aenauto.com/EN/10.16638/j.cnki.1671-7988.2023.06.028
http://www.aenauto.com/EN/Y2022/V48/I6/136