主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2025, Vol. 50 ›› Issue (7): 1-7.DOI: 10.16638/j.cnki.1671-7988.2025.007.001

• 新能源汽车 •    

基于扩展卡尔曼滤波的数据驱动荷电状态估计

刘建峰   

  1. 长安大学 汽车学院
  • 发布日期:2025-04-14
  • 通讯作者: 刘建峰
  • 作者简介:刘建峰(1999-),男,硕士研究生,研究方向为锂离子电池荷电状态估计与均衡
  • 基金资助:
    陕西省重点研究发展计划(2020ZDLGY16-02);陕西省重点研发计划(2021LLRH-04-03-02);咸阳市重点 研发计划项目(L2023-ZDYF-QYCX-032)

Data-Driven State of Charge Estimation Based on Extended Kalman Filtering

LIU Jianfeng   

  1. School of Automobile, Chang'an University
  • Published:2025-04-14
  • Contact: LIU Jianfeng

摘要: 由于电池工作环境条件不断变化,估计荷电状态(SOC)面临一定挑战。准确的 SOC 估计不仅能有效防止电池过充和过放电,还能提供精确的续航预测,并延长电池使用寿命。 文章采用一种基于扩展卡尔曼滤波(EKF)和数据驱动相结合的锂离子电池 SOC 估计方法。 首先,采用带遗忘因子递推最小二乘法(FFRLS)对电池模型的特征参数进行动态跟踪;其 次,将 EKF 算法结果作为训练数据输入至极限梯度提升(XGBoost)模型;最后,凭借 XGBoost 机器学习和预测的能力,结合 EKF 算法,实现电池 SOC 的高精度估计。仿真结果表明,文 章采用的组合算法在收敛性和精确度方面优于 EKF 和传统机器学习算法。此外,通过在不同 工况下进行验证,结果证明该方法能够实现 SOC 的精准估计,能够提供准确、稳定的 SOC 值。

关键词: 荷电状态估计;扩展卡尔曼滤波;数据驱动模型;锂离子电池;XGBoost 模型

Abstract: Accurately estimating the state of charge (SOC) is challenging due to the changing environmental conditions in which batteries operate. Accurate SOC estimation not only prevents battery overcharging and overdischarging, but also provides accurate range predictions and extends battery life. In this paper, a SOC estimation method for lithium-ion batteries based on a combination of extended Kalman filter (EKF) and data-driven is adopted. Firstly, the recursive least squares method with forgetting factor (FFRLS) is used to dynamically track the characteristic parameters of the battery model. Secondly, the results of the EKF algorithm are input into the Extreme Gradient Boosting (XGBoost) model as training data. With the machine learning and prediction capabilities of XGBoost, combined with the EKF algorithm, high-precision estimation of battery SOC is realized.The simulation results show that the combined algorithm adopted in this paper is better than the EKF and traditional machine learning algorithms in terms of convergence and accuracy. In addition, the results show that the method can achieve accurate SOC estimation and provide accurate and stable SOC values by verifying under different working conditions.

Key words: state of charge estimation; extended Kalman filtering; data-driven model; lithium-ion batteries; XGBoost model