[ 1 ] 施彦彤,郑东健,赵汉,等.基于 CNN-Attention-LSTM
的大坝变形预测模型[J].水利水电技术(中英文),2024,
55(9):121-132.
[ 2 ] CHEN L,WANG Z Z,LV Z Q,et al.A Novel State-OfCharge Estimation Method of Lithium-ion Batteries
Combining the Grey Model and Genetic Algorithms
[J].IEEE Transactions on Power Electronics,2018,33
(10):8797-8807.
[ 3 ] TIAN Y,LAI R,LI X Y,et al.A Combined Method for
State-Of-Charge Estimation for Lithium-ion Batteries
Using a Long Short-term Memory Network and an
Adaptive Cubature Kalman Filter[J].Applied Energy,
2020,265:114789.
[ 4 ] 张照娓,郭天滋,高明裕,等.电动汽车锂离子电池荷
电状态估算方法研究综述[J].电子与信息学报,2021,
43(7):1803-1815.
[ 5 ] ABBAS G,NAWAZ M,KAMRAN F.Performance Comparison of NARX & RNN-LSTM Neural Networks for
LiFePO4 Battery State Of Charge Estimation[C]//The
2019 16th International Bhurban Conference on
Applied Sciences and Technology.Piscataway:IEEE,
2019:463-468.
[ 6 ] 郑永飞,文怀兴,韩昉,等.基于 LSTM 神经网络的动
力电池 SOC 估算研究[J].计算机应用与软件,2020,37
(3):78-81,88.
[ 7 ] 张帅涛,蒋品群,宋树祥,等.基于注意力机制和 CNNLSTM融合模型的锂电池SOC预测[J].电源学报,2024,
22(5):269-277.
[ 8 ] SONG X B,YANG F F,WANG D,et al.Combined
CNN-LSTM Network for State-of-Charge Estimation
of Lithium-ion Batteries[J].IEEE Access,2019:88894-
88902.
[ 9 ] 徐超达.纯电动汽车电池 SOC 及剩余充电时间预测
的研究[D].福州:福建工程学院,2021.
[10] 高凯,李勋豪,胡林,等.基于多头注意力的 CNN-LSTM
的换道意图预测[J].机械工程学报,2022,58(22):369-
378.
[11] HU Z T,HU C H,YANG H R,et al.Unsupervised MultiModal Image Translation Based on the Squeeze-andExcitation Mechanism and Feature Attention Module
[J].High Technology Letters,2024,30(1):23-30.
[12] 欧斌,吴邦彬,袁杰,等.基于 LSTM 的混凝土坝变形预
测模型[J].水利水电科技进展,2022,42(1):21-26.
[13] 邱锡鹏.神经网络与深度学习:案例与实践[M].北京:
机械工业出版社,2022.
[14] 管恩丞.基于深度学习的城市轨道交通客流短时预
测方法研究[D].扬州:扬州大学,2023.
[15] 孟颖.基于双尺度高光谱信息的寒地水稻品种精细
分类研究[D].哈尔滨:东北农业大学,2023. |