主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (8): 1-5.DOI: 10.16638/j.cnki.1671-7988.2024.008.001

• 新能源汽车 •    

基于 RLS 和 EKF 算法的锂离子动力电池 荷电状态估计

潘正军   

  1. 金肯职业技术学院 江苏地下空间智慧运维工程技术研究开发中心
  • 发布日期:2024-04-24
  • 通讯作者: 潘正军
  • 作者简介:潘正军(1993-),男,硕士,讲师,研究方向为新能源汽车技术,E-mail:1137656476@qq.com。
  • 基金资助:
    江苏省高职院校青年教师企业实践培训项目资助(2023QYSJ050);江苏地下空间智慧运维工程技术研究开 发中心开放基金资助(jsdxkjzh-2023-40)。

State of Charge Estimation of Lithium-ion Power Battery Based on RLS and EKF Algorithms

PAN Zhengjun   

  1. Jiangsu Underground Space Intelligent Operation and Maintenance Engineering Technology Research and Development Center
  • Published:2024-04-24
  • Contact: PAN Zhengjun

摘要: 电池荷电状态(SOC)是电动汽车电池管理系统的关键参数之一,影响着整车性能与 安全。文章以一阶 Thevenin 等效电路作为电池模型,采用递推最小二乘法(RLS)对电池进 行参数辨识,再运用扩展卡尔曼滤波(EKF)算法估算电池的 SOC。将估算结果与试验测量 结果进行对比,结果显示,RLS-EKF 的联合算法可有效估计电池的 SOC 值,估算误差值基 本保持在 2%以内。

关键词: 电池 SOC;RLS;EKF;联合算法

Abstract: The state of charge (SOC) of the battery is one of the key parameters of the battery management system of electric vehicles, which affects the performance and safety of the vehicle. In this paper, the first-order Thevenin equivalent circuit is used as the battery model, the parameters of the battery are identified by recursive least square method (RLS), and the SOC of the battery is estimated by extended Kalman filter (EKF) algorithm. Comparing the estimated results with the test results, the results show that the combined RLS-EKF algorithm can effectively estimate the SOC value of the battery, and the estimated error value is basically kept within 2%.

Key words: Battery SOC; RLS; EKF; Combined algorithm