主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2023, Vol. 48 ›› Issue (8): 17-21.DOI: 10.16638/j.cnki.1671-7988.2023.08.003

• 新能源汽车 • 上一篇    下一篇

车用双层微通道散热器热性能的优化研究

张永栋,蒋翠翠,郑少鹏   

  1. 广东交通职业技术学院 汽车与工程机械学院,广东 广州 510640
  • 出版日期:2023-04-30 发布日期:2023-04-30
  • 通讯作者: 张永栋
  • 作者简介:张永栋(1983—),男,在职博士研究生,副教授,研究方向为汽车电子产品热管理,E-mail:m6894334@163.com。
  • 基金资助:
    广东省高校省级重点平台和重大科研项目:电动汽车功率电子模块冲击冷却传热特性研究(2017GkQNCX 019);基于测试技术的新能源汽车动力系统关键部件动力学特征参数研究(2017GkQNCX020)。

Optimization Research of Thermal Performance of Double Micro-channel Heat Sink for Pure Electric Vehicle

ZHANG Yongdong, JIANG Cuicui, ZHENG Shaopeng   

  1. Major Cluster of Automobile & Construction Machinery, Guangdong Communication Polytechnic, Guangzhou 510640, China
  • Online:2023-04-30 Published:2023-04-30
  • Contact: ZHANG Yongdong

摘要: 随着纯电动汽车芯片性能的快速提高,散热不足已成为电子技术发展的瓶颈。当热流 密度超过 100 W/cm 2,传统空气冷却技术就无法满足散热需求。双层微通道散热器因为具有较 大的传热面积与体积比,被认为是改善散热性能的最佳方法之一。论文针对纯电动汽车芯片 散热技术问题,采用响应曲面法对双层微通道散热器开展了优化研究。结果表明,优化后有 更好的整体散热性能,与原始尺寸的两种双层微通道散热器相比,热阻分别降低 4.23%、 9.42%。

关键词: 双层微通道散热器;热阻;泵功;响应曲面法

Abstract: With the rapid improvement of the performance of pure electric vehicle chips, the lack of heat dissipation has become the bottleneck of the development of electronic technology. When the heat flux density exceeds 100 W/cm 2 , the traditional air cooling technology can not meet the heat dissipation demand. The double micro-channel heat sink is considered to be one of the best methods to improve the heat dissipation performance because of its large heat transfer area to volume ratio. In this paper, the optimization of the double micro-channel heat sink is carried out by using the response surface methodology in the field of pure electric vehicle chip heat dissipation. The results show that the optimized double micro-channel heat sink has better overall heat dissipation performance. Compared with the original size of the double micro-channel heat sink, the thermal resistance is reduced by 4.23% and 9.42% respectively.

Key words: Double micro-channel heat sink; Thermal resistance; Pumping-power; Response surface methodology