主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2023, Vol. 48 ›› Issue (20): 15-19.DOI: 10.16638/j.cnki.1671-7988.2023.020.004

• 新能源汽车 • 上一篇    

氢燃料电池热管理系统仿真分析

耿毫伟,李红信,靳晨曦,汪树恒   

  1. 雄川氢能科技(广州)有限责任公司
  • 出版日期:2023-10-30 发布日期:2023-10-30
  • 通讯作者: 耿毫伟
  • 作者简介:耿毫伟(1993-),男,硕士,工程师,研究方向为燃料电池热管理系统开发,E-mail:2319123055@qq.com。

Simulation Analysis of Fuel Cell Thermal Management System

GENG Haowei, LI Hongxin, JIN Chenxi, WANG Shuheng   

  1. Xiongchuan Hydrogen Energy Technology (Guangzhou) Company Limited
  • Online:2023-10-30 Published:2023-10-30
  • Contact: GENG Haowei

摘要: 文章以 120 kW 氢燃料电池系统为研究对象,结合热管理要求,对制定的控制策略进行 仿真分析。采用 AMESim 软件搭建氢燃料电池热管理系统仿真模型,以电堆和中冷器的产热 为输入条件,电堆的入口温度和进出口温差为评价指标。首先对额定工况点进行仿真计算, 得到在额定工况下的电堆入口温度为 72.8 ℃,出口温度为 79.1 ℃,温差为 6.3 ℃,水泵、 散热器等部件能够满足散热需求。然后进行全功率仿真分析,得到水泵、风扇、节温器能够 很好的响应温度的变化,并且随着产热的增加,使得电堆的入口温度维持在 75 ℃以内,温 差维持在 8 ℃以内,满足电堆的温控要求。

关键词: 燃料电池系统;热管理;AMESim 软件;仿真分析;控制策略

Abstract: In this paper, 120 kW hydrogen fuel cell system is taken as the research object, combined with thermal management requirements, the control strategy is simulated and analyzed. The simulation model of the hydrogen fuel cell thermal management system is built by AMESim software. The heat production of the reactor and the intercooler is taken as the input condition, and the inlet temperature of the reactor and the inlet and outlet temperature difference are taken as the evaluation index. Firstly, the simulation calculation of the rated working conditions is carried out, and it is obtained that under the rated working conditions, the inlet temperature of the reactor is 72.8 ℃, the outlet temperature is 79.1 ℃, and the temperature difference is 6.3 ℃. The water pump and heat sink meet the heat dissipation requirements. Then the full power simulation analysis shows that the water pump, fan and thermostat can well respond to the temperature change, and with the increase of heat generation, the inlet temperature of the reactor can be maintained within 75 ℃, and the temperature difference can be maintained within 8 ℃ , which meets the temperature control requirements of the reactor.

Key words: Fuel cell system; Thermal management; AMESim; Simulation analysis; Control strategy