[ 1 ] MOHARAM A,EL-HOSSEINI M A,ALI H A.Design
of Optimal PID Controller Using Hybrid Differential
Evolution and Particle Swarm Optimization with an
Aging Leader and Challengers[J].Applied Soft Computing,2016,38:727-737.
[ 2 ] 蒲磊,郑伟光.基于粒子群优化算法的纯电动物流车
动力系统参数匹配优化[J].汽车工程师,2023,301(5):
20-25.
[ 3 ] 孟艳.基于粒子群优化算法的汽车动力传动参数优
化设计[J].微型电脑应用,2022,38(8):119-120,132.
[ 4 ] MEENA D C,DEVANSHU A.Genetic Algorithm Tuned
PID Controller for Process Control[C]//2017 Lnternational Conference on Lnventive Systems and Control
(ICISC).Piscataway:IEEE,2017:1-6.
[ 5 ] JAYACHITRA A,VINODHA R.Genetic Algorithm
Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor[J].Advances in Artificial
Lntelligence,2015,2014:1-8.
[ 6 ] RODRíGUEZ-MOLINA A, MEZURA-MONTES E,
VILLARREAL-CERVANTES M G, et al. Multiobjective Metaheuristic Optimization in Intelligent Control:
A Survey on the Controller Tuning Problem[J].Applied
Soft Computing,2020,93:106342.
[ 7 ] KILLINGSWORTH N J,KRSTIC M.PID Tuning Using
Extremum Seeking:Online,Model-free Performance
Optimization[J].IEEE Control Systems Magazine,2006,
26(1):70-79.
[ 8 ] MEMON F,SHAO C.AN Optimal Approach to Online
Tuning Method for PID Type Iterative Learning Control
[J].International Journal of Control,Automation and
Systems,2020,18:1926-1935.
[ 9 ] KANEKO O.Data-driven Controller Tuning:FRIT
Approach[J].IFAC Proceedings Volumes,2013,46(11):
326-336.
[10] AHMEID M,Armstrong M,AL-Greer M,et al. Computationally Efficient Self-tuning Controller for DC-DC
Switch Mode Power Converters Based on Partial
Update Kalman Filter[J].IEEE Transactions on Power
Electronics,2017,33(9):8081-8090.
[11] HEDRICK E,HEDRICK K,BHATTACHARYYA D,et
al.Reinforcement Learning for Online Adaptation of
Model Predictive Controllers:Application to A Selective Catalytic Reduction Unit[J].Computers & Chemical Engineering,2022,160:107727.
[12] KOFINAS P,DOUNIS A I.Online Tuning of A PID
Controller with a Fuzzy Reinforcement Learning
MAS for Flow Rate Control of a Desalination Unit[J].
Electronics,2019,8(2):231.
[13] LI T,HU W,ZHANG G,et al.Deep Reinforcement Learning-based Approach for Online Tuning SMES Damping Controller Parameters[C]//2020 IEEE International Conference on Applied Superconductivity and
Electromagnetic Devices (ASEMD).Piscataway:IEEE,
2020:1-2.
[14] MEHNDIRATTA M,CAMCI E,KAYACAN E.Automated Tuning of Nonlinear Model Predictive Controller
by Reinforcement Learning[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).IEEE,2018:3016-3021.
[15] SHIPMAN W J,COETZEE L C.Reinforcement Learning and Deep Neural Networks for PI Controller
Tuning[J].IFAC-PapersOnLine,2019,52(14):111-116.
[16] 毕翔,黄晃,张本宏,等.基于分簇与改进 Q 学习的车联
网 V2V 复合路由算法[J].计算机工程,2023,49(3):221-
230,247.
[17] 肖振飞,李金娜.基于非策略 Q 学习方法的两个个体
优化控制[J].控制工程,2022,29(10):1874-1880.
[18] 钱立军,陈晨,陈健,等.基于 Q 学习模型的无信号交叉
口离散车队控制[J].汽车工程,2022,44(9):1350-1358,
1385.
[19] 李铮,李金娜.基于强化学习方法的无人机自主避障
[C]//第 33 届中国过程控制会议论文集.北京:中国自
动化学会,2022.
[20] 王珂,穆朝絮,蔡光斌,等.基于安全自适应强化学习的
自主避障控制方法[J].中国科学:信息科学,2022,52
(9):1672-1686.
[21] GARCIA J,FERNáNDEZ F.A Comprehensive Survey
on Safe Reinforcement Learning[J].Journal of Machine Learning Research,2015,16(1):1437-1480.
[22] 李威,张晓东,姜学峰,等.基于改进强化学习的机器人
路径规划研究[J].制造业自动化,2023,45(3):148-151,
172.
[23] 任伟,朱建鸿.改进的自校正 Q 学习应用于智能机器
人路径规划[J/OL].机械科学与技术:1-7[2023-07-31].
DOI:10.13433/j.cnki.1003-8728.20230157.
[24] 郭玉帆,沈世全,刘冠颖,等.加权双 Q 学习算法优化的
PHEV 能量管理策略研究[J].重庆理工大学学报(自
然科学),2023,37(2):86-96. |