主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2021, Vol. 46 ›› Issue (17): 30-33.DOI: 10.16638/j.cnki.1671-7988.2021.017.009

• 智能网联汽车 • 上一篇    

一种基于模糊逻辑智能控制的驾驶员模型

杨 浩 1,薛 锋 1,税永波 1,韩中海 2   

  1. 1.重庆工商职业学院;2.中国汽车工程研究院股份有限公司
  • 出版日期:2021-09-15 发布日期:2021-09-15
  • 通讯作者: 杨 浩
  • 作者简介:杨浩,男,硕士研究生,讲师,就职于重庆工商职业学 院,研究方向:车辆动力学。

A Driver Model Based on Fuzzy Logic Intelligent Control

YANG Hao1 , XUE Feng1 , SHUI Yongbo1 , HAN Zhonghai2   

  1. 1.Chongqing Vocational College of Industry and Commerce; 2.China Automotive Engineering Research Institute Co., Ltd.
  • Online:2021-09-15 Published:2021-09-15
  • Contact: YANG Hao

摘要: 模糊逻辑智能控制由于不需要精确的数学模型,能较好的适用于非线性系统,因此被广泛地应用于控制领 域。驾驶员模型主要分析车辆路径跟踪的效果,为了提高车辆路径跟踪精度和适应性,需要建立人-车-路闭环系统。 由于车辆模型具有高度的非线性,无法用精确的数学表达式来建立。同时由于驾驶员具有反应和操作的滞后因素, 因此,难以用精确的数学模型来建立人-车-路闭环系统模型。而驾驶员模型对方向盘的决策主要通过引入控制理论 来处理分析。因此,文章将模糊逻辑智能控制运用于方向盘转角的输入控制。通过模糊逻辑智能控制,建立以侧向 误差和车速的二维输入变量,方向盘转角为一维的输出变量控制模型。将车辆的方向盘转角通过模糊化、隶属度函 数的选择、模糊规则的制定、解模糊化四个步骤来决策出最优的方向盘转角。避免了对车辆模型的数学表达式的依 赖。通过仿真验证,所建立的驾驶员模型能较好地适应于非线性系统,可有效提高车辆路径跟踪的精度。

关键词: 模糊逻辑;驾驶员模型;控制理论

Abstract: Fuzzy logic intelligent control is widely used in the control field because it does not require precise mathematical models and can be better applied to nonlinear systems. The driver model mainly analyzes the effect of vehicle path tracking. In order to improve the accuracy and adaptability of vehicle path tracking, a human-vehicle-road closed-loop system needs to be established. Because the vehicle model is highly non-linear, it cannot be established with precise mathematical expressions. At the same time, because the driver has lag factors in response and operation, it is difficult to establish a human-vehicle-road closed-loop system model with an accurate mathematical model. The driver model's decision-making on the steering wheel is mainly processed and analyzed by introducing control theory. Therefore, this paper applies fuzzy logic intelligent control to the input control of the steering wheel angle. Through fuzzy logic intelligent control, a two-dimensional input variable of lateral error and vehicle speed is established, and a steering wheel angle is a one-dimensional output variable control model. The steering wheel angle of the vehicle is determined by four steps: fuzzification, membership function selection, fuzzy rule formulation, and defuzzification to determine the optimal steering wheel angle. Avoid the dependence on the mathematical expression of the vehicle model. Through simulation verification, the established driver model can be better adapted to the nonlinear system and can effectively improve the accuracy of vehicle path tracking.

Key words: Fuzzy logic; Driver model; Control theory