主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2025, Vol. 50 ›› Issue (15): 56-62.DOI: 10.16638/j.cnki.1671-7988.2025.015.010

• 智能网联汽车 • 上一篇    

基于动态特征关联的车道线识别方法

邓志巧   

  1. 广汽埃安新能源汽车股份有限公司 智驾系统部
  • 发布日期:2025-08-08
  • 通讯作者: 邓志巧
  • 作者简介:邓志巧(1991-),女,硕士,工程师,研究方向为智能驾驶

Lane Line Recognition Method Based on Dynamic Relevance Feature

DENG Zhiqiao   

  1. Intelligent Driving System Department, GAC Aion New Energy Automobile Company Limited
  • Published:2025-08-08
  • Contact: DENG Zhiqiao

摘要: 目前,基于深度学习的车道线检测方法在大部分场景表现良好,但对于具有复杂拓扑 结构的车道线实例区分问题表现欠佳。为了解决此类问题,文章提出了一种基于动态特征关 联提取相对起始点来表达车道实例的方法。首先,利用深度学习模型提取代表车道线特征的 前景点,然后基于全局特征信息建立车道线前景点与起始点的关联关系,最后,构建基于动 态调整起始点的车道实例聚类算法解码器基于相对起始点对车道特征进行实例解码。同时创 新性地采用 Pull-Push 损失动态调整前景点特征与起始点特征的关联状态,该方法可以使前景 点关联在相对起始点而非绝对起始点上,可以有效克服起始点较近的车道线实例检测问题。 该研究对处理复杂拓扑下的车道线实例区分问题有明显的效果提升。

关键词: 深度学习;车道线检测;特征关联;相对起始点;双线;分岔线;聚类

Abstract: At present, lane line detection methods based on deep learning perform well in most scenarios, but they perform poorly in distinguishing lane line instances with complex topological structures. To solve such problems, the article proposes a method for expressing lane instances based on the extraction of relative starting points through dynamic feature association. Firstly, a deep learning model is utilized to extract the foreground points representing the lane line features. Then, based on the global feature information, the association relationship between the foreground points and the starting points of the lane lines is established. Finally, a lane instance clustering algorithm decoder based on dynamically adjusting the starting points is constructed to decode the lane features based on the relative starting points. Meanwhile, the Pull-Push loss is innovatively adopted to dynamically adjust the association state between the foreground point features and the starting point features. This method enables the foreground points to be associated at the relative starting point rather than the absolute starting point, which can effectively overcome the problem of lane line instance detection where the starting point is relatively close. This research has significantly improved the effect in dealing with the problem of lane line instance distinction under complex topologies.

Key words: deep learning; lane line detection; feature association; relative starting point; double lines; bifurcation line; clustering