主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2025, Vol. 50 ›› Issue (15): 42-47.DOI: 10.16638/j.cnki.1671-7988.2025.015.008

• 智能网联汽车 • 上一篇    

基于改进 YOLOv8s 的驾驶员人脸检测方法

彭玲,姜立标*,王蕊,谢杨钟   

  1. 广州城市理工学院 机械工程学院
  • 发布日期:2025-08-08
  • 通讯作者: 姜立标
  • 作者简介:彭玲(1991-),女,硕士,工程师,研究方向为汽车模式识别
  • 基金资助:
    2024 广州城市理工学院科研项目(52-K0224026)

Driver Face Detection Method Based on Improved YOLOv8s

PENG Ling, JIANG Libiao* , WANG Rui, XIE Yangzhong   

  1. School of Mechanical Engineering, Guangzhou City University of Technology
  • Published:2025-08-08
  • Contact: JIANG Libiao

摘要: 针对实际驾驶场景复杂多变、驾驶员人脸检测模型参数量大、识别精度低的问题,文 章选取参数量较小、检测速度快、定位精度较高的 YOLOv8s 作为检测器,设计一种基于优化 YOLOv8s 的驾驶员人脸检测算法降低计算复杂度提高检测精度。在特征提取网络中引入注意 力模块增加人脸关注度,运用轻量化的广义序列后向选择模块(GSBS)减少参数量;在特征 融合网络中使用视图组洗牌交叉阶段局部(VoV-GSCSP)模块与 GSBS 模块降低参数量,使 用上采样算子、双向特征金字塔(BiFPN)结构对特征金字塔优化,提高特征图信息利用率。 实验结果表明,与 YOLOv8s 相比,该方法在单张图片检测速度上提升了 6.6 ms,同时平均精 度提高 0.5%,能够满足车载系统对人脸检测在实时性与准确性两方面的要求。

关键词: 深度学习;人脸检测;YOLOv8s;实验评估

Abstract: In response to the complex and varied driving scenarios, the large number of parameters in the driver face detection model, and the low recognition accuracy, this paper selects YOLOv8s, which has a small number of parameters, fast detection speed, and high positioning accuracy, as the detector, and designs a driver face detection calculation method based on optimized YOLOv8s to reduce computational complexity and improve detection accuracy. Introducing an attention module in the feature extraction network to increase facial attention, and using a lightweight generalized sequential backward selection (GSBS) module to reduce parameter count. In the feature fusion network, variety of view-group shuffle cross stage partial (VoV-GSCSP) network module and GSBS module are used to reduce the number of parameters, and the upsampling operator content-aware reassembly of features and bidirectional feature pyramid network (BiFPN) structure are used to optimize the feature pyramid and improve the utilization of feature map information. The experimental results show that compared to YOLOv8s, our proposed method not only improves the detection speed of a single image by 6.6 ms, but also increases the average accuracy by 0.5%, meeting the real-time and accuracy requirements of face detection in vehicle systems.

Key words: deep learning; driver face detection; YOLOv8s; experimental evaluation