主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2025, Vol. 50 ›› Issue (1): 20-24,64.DOI: 10.16638/j.cnki.1671-7988.2025.001.004

• 智能网联汽车 • 上一篇    

基于 NGSIM 的驾驶风格识别研究

康宇 1,赵建有 1,赵阳 2,孙战丽 3   

  1. 1.长安大学 汽车学院;2.长安大学 运输工程学院; 3.河南交通投资集团有限公司航空港分公司
  • 发布日期:2025-01-09
  • 通讯作者: 康宇
  • 作者简介:康宇(1999-),女,硕士研究生,研究方向为交通运输工程,E-mail:3078803310@qq.com
  • 基金资助:
    河南省交通运输厅科技项目《基于交通行为安全性的河南省高速公路运行控制技术研究》(2019G-2-11); 国家重点研发计划项目《自主式交通复杂系统体系架构研究》(SQ2020YFB160001)

Research on Driving Style Recognition Based on NGSIM

KANG Yu1 , ZHAO Jianyou1 , ZHAO Yang2 , SUN Zhanli3   

  1. 1.School of Automobile, Chang'an University; 2.School of Transportation Engineering, Chang'an University; 3.Henan Communications Investment Group Company Limited Airport Branch
  • Published:2025-01-09
  • Contact: KANG Yu

摘要: 文章针对不同的驾驶员做出了驾驶风格识别。首先,利用对称指数移动平均滤波算法 对 NGSIM 数据集进行平滑处理;其次,通过分析国内外关于表征驾驶风格的关键指标,确定 了 8 个驾驶风格特征变量,再计算驾驶风格特征向量秩,验证了所选的 8 个特征具有较好的 独立性,结合主成分分析识别表征驾驶风格的三种变量;最后,构建了 K-Means++模型,将 驾驶员驾驶风格聚类为激进型、一般型和谨慎型。为了对比验证,还建立 K-Means 和高斯混 合模型(GMM)。结果表明,K-Means++模型的轮廓系数和算法运行时长均优于 K-Means、 GMM,文章所提出的驾驶风格聚类方法能够对驾驶员的驾驶风格进行有效分类,对于提升交 通安全、交通效率和促进智能交通系统的发展具有重要的意义。

关键词: 交通安全;驾驶风格;K-Means++;NGSIM;PCA

Abstract: This article focuses on identifying driving styles among different drivers. Firstly, the NGSIM dataset is smoothed by symmetrical exponential moving average filtering algorithm. Secondly, by analyzing key indicators from domestic and international studies on characterizing driving styles, eight driving style feature variables are determined. The independence of these eight features is validated by calculating the rank of the driving style feature vector. Combining principal component analysis, three variables that characterize driving styles are identified. Then, the KMeans++ model is constructed to cluster driving styles into aggressive, moderate, and cautious types.For comparison and validation, K-means and gaussian mixture module (GMM) models are also established. The results show that the silhouette coefficient and algorithm runtime of the K-Means++ model are superior to those of the K-Means and GMM models. The driving style clustering method proposed in this paper can effectively classify the driving style of drivers, which is of great significance for improving traffic safety, traffic efficiency and promoting the development of intelligent transportation system.

Key words: traffic safety; driving style; K-Means++; NGSIM; PCA