主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (20): 1-8,18.DOI: 10.16638/j.cnki.1671-7988.2024.020.001

• 新能源汽车 •    

基于 RBF 滑模控制的分布式驱动电动车辆 转向稳定性研究

闫文志,智晋宁,靳峰   

  1. 太原科技大学 机械工程学院
  • 发布日期:2024-10-21
  • 通讯作者: 闫文志
  • 作者简介:闫文志(1998-),男,硕士研究生,研究方向为分布式驱动电动车辆转矩协调控制域稳定性,E-mail: 804944462@qq.com
  • 基金资助:
    山西省自然科学基金分布式驱动电动车辆转矩协调分配与容错控制研究(202203021211196)

Research on Steering Stability of Distributed Drive Electric Vehicle Based on RBF Sliding Mode Control

YAN Wenzhi, ZHI Jinning, JIN Feng   

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology
  • Published:2024-10-21
  • Contact: YAN Wenzhi

摘要: 分布式驱动电动车辆四轮转矩独立可控,驱动电机响应较快、传动链短,但在转弯时 由于车轮纵向力和侧向力之间的耦合关系,使车辆容易发生侧滑风险。因此,为提高分布式 驱动电动车辆的转向稳定性,文章提出基于径向基函数(RBF)神经网络改进的滑模控制策 略。整车采用分层控制结构,上层采用滑模控制器对横摆力矩进行控制,为避免“抖振”问 题,引入 RBF 神经网络对传统滑模控制算法中的滑模增益进行优化改进;下层驱动力分配层 根据轮胎垂向载荷的动态转移特性对四轮转矩进行合理分配,使其满足整车驱动力和附加横 摆力矩需求,最后在 CarSim 和 MATLAB/Simulink 中进行联合仿真。结果表明,改进的滑模 控制器在高速工况可以减小汽车前轮转角,转弯时横摆角速度、质心侧偏角分别可降低 0.1 rad/s 和 0.01 rad,低速工况下横摆角速度和质心侧偏角分别可降低 0.12 rad/s 和 0.013 rad, 有效地改善车辆稳定性。

关键词: 分布式驱动;电动车辆;滑模控制;稳定性;转矩分配;CarSim;MATLAB/Simulink

Abstract: The four-wheel torque of distributed drive electric vehicle is independent and controllable, the drive motor response is fast, and the transmission chain is short, but the vehicle is prone to sideslip risk due to the coupling relationship between the longitudinal and lateral forces of the wheel when turning. Therefore, in order to improve the steering stability of distributed drive electric vehicle, an improved sliding mode control strategy based on radial basis function (RBF) neural network is proposed in this paper. The vehicle adopts a layered control structure, and the upper layer adopts a sliding mode controller to control the yawing moment. In order to avoid the "buffeting" problem, a RBF neural network is introduced to optimize and improve the sliding mode gain in the traditional sliding mode control algorithm. The lower driving force distribution layer distributes the four-wheel torque reasonably according to the dynamic transfer characteristics of the vertical load of the tire, so that it can meet the driving force and additional yaw torque requirements of the vehicle. Finally, the joint simulation is carried out in CarSim and MATLAB/Simulink. The results show that the improved sliding mode controller can reduce the front wheel angle at high speed, the yaw speed and the side yaw angle of center of mass can be reduced by 0.1 rad/s and 0.01 rad, respectively, and the yaw speed and the side yaw angle of center of mass can be reduced by 0.12 rad/s and 0.013 rad at low speed, which can effectively improve the vehicle stability.

Key words: distributed drive; electric vehicle; sliding mode control; stability; torque distribution; CarSim; MATLAB/Simulink