主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (7): 113-119.DOI: 10.16638/j.cnki.1671-7988.2024.007.020

• 测试试验 • 上一篇    

液压弹簧式准零刚度隔振系统特性分析

耿迪生,任亚峰*,连晋毅,孙晓辉   

  1. 太原科技大学 机械工程学院
  • 发布日期:2024-04-10
  • 通讯作者: 任亚峰
  • 作者简介:耿迪生(1998-),男,硕士研究生,研究方向为工程机械与电动车辆轻量化集成化技术,E-mail:1493426 288@qq.com。 通信作者:任亚峰(1990-),男,博士,副教授,研究方向为系统动力学、隔振技术,E-mail:2019070@tyust.edu.cn。
  • 基金资助:
    山西省科技厅基础研究计划项目(20210302124445)。

Characteristic Analysis of Hydraulic Spring Type Quasi-zero Stiffness Vibration Isolation System

GENG Disheng, REN Yafeng* , LIAN Jinyi, SUN Xiaohui   

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology
  • Published:2024-04-10
  • Contact: REN Yafeng

摘要: 针对车载精密仪器低频隔振,文章将两个液压弹簧作为负刚度元件,并与竖直弹簧并 联构造了一种新型准零刚度隔振系统。通过对系统进行静力学分析,得到了实现准零刚度特 性的参数条件;利用平均法求解了系统在简谐力激励下的幅频响应;采用马蒂厄方程判别法 对系统的稳定性进行了分析;又分析了线性刚度参数和非线性刚度参数对力传递率的影响。 研究结果表明,相较于线性系统,准零刚度系统的起始隔振频率降低了 54%左右。该研究使 得车载精密仪器在低频乃至超低频工况下也不会轻易损坏,具有广泛的应用前景。

关键词: 低频隔振;液压弹簧;准零刚度;力传递率;隔振频带

Abstract: For low-frequency vibration isolation of vehicle precision instruments, a new quasizero-stiffness vibration isolation system is constructed by using two hydraulic springs as negative stiffness components in parallel with vertical springs. Through the static analysis of the system, the parameter conditions for realizing the quasi-zero stiffness characteristics are obtained. The amplitude-frequency response of the system under harmonic excitation is solved using the average method. The stability of the system is analyzed using the Mathieu equation. The effects of linear stiffness parameters and nonlinear stiffness parameters on force transmissibility are also analyzed. The results show that the initial vibration isolation frequency of the quasi-zero stiffness system is reduced by about 54% compared with that of the linear system. The research makes the vehicle precision instrument not easily damaged under low frequency or even ultra-low frequency conditions, and has a wide application prospect.

Key words: Low frequency vibration isolation; Hydraulic spring; Quasi-zero stiffness; Force transfer rate; Vibration isolation band