[ 1 ] 陈云培.《汽车驾驶自动化分级》(GB/T 40429—
2021)解析[J].汽车维护与修理,2021,409(21):68-70.
[ 2 ] 张勇,杜学峰,高越,等.基于传统图像处理算法的车
道线检测[J].汽车实用技术,2022,47(2):20-23.
[ 3 ] 王维,包志华,王慧玲,等.基于动态感兴趣区域的车
道偏离检测算法[J].计算机仿真,2020,37(9):113-117.
[ 4 ] 曹树星.基于 OpenCV 的直道车道线识别技术研究
[J].汽车实用技术,2022,47(5):26-29.
[ 5 ] KO Y, LEE Y, AZAM S, et al. Key Points Estimation
and Point Instance Segmentation Approach for Lane
Detection[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(7):8949-8958.
[ 6 ] HOU Y,MA Z,LIU C,et al.Learning Lightweight Lane
Detection Cnns by Self Attention Distillation[C]//
Proceedings of the IEEE/CVF International Conference
on Computer Vision.Piscataway:IEEE,2019:1013-
1021.
[ 7 ] 胡序洋,高尚兵,汪长春,等.LaneSegNet:一种高效的
车道线检测方法[J].南京信息工程大学学报(自然科
学版),2022,14(5):551-558.
[ 8 ] 何春明,许磊,卢国胜,等.基于模糊熵的 GLLE 熵阈值
分割方法[J].南京信息工程大学学报(自然科学版),
2019,11(6):757-763.
[ 9 ] TABELINI L,BERRIEL R,PAIXAO T M,et al. Polylanenet:Lane Estimation Via Deep Polynomial Regression[C]//2020 25th International Conference on Pattern Recognition (ICPR).Piscataway:IEEE,2021:6150-
6156.
[10] HE K,ZHANG X,REN S,et al.Deep Residual Learning
for Image Recognition[C]//Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:770-778.
[11] TAN M,LE Q.Efficientnet:Rethinking Model Scaling
for Convolutional Neural Networks[C]//International
Conference on Machine Learning. New York:PMLR,
2019:6105-6114. |