主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2023, Vol. 48 ›› Issue (15): 87-94.DOI: 10.16638/j.cnki.1671-7988.2023.015.015

• 智能网联汽车 • 上一篇    

基于深度学习和 A*算法的智能车路径规划研究

梁 超   

  1. 江苏安全技术职业学院
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 通讯作者: 梁 超
  • 作者简介:梁超(1985-),男,硕士,讲师,研究方向为汽车检测与维修,E-mail:Liangchao20220228@163.com。
  • 基金资助:
    2023 年江苏省高校哲学社会科学研究项目(2023SJYB1204);2022 年中国高校产学研创新基金资助课题 (2022BC152)。

Research on Intelligent Vehicle Path Planning Based on Deep Learning and A* Algorithm

LIANG Chao   

  1. Jiangsu College of Safety Technology
  • Online:2023-08-15 Published:2023-08-15
  • Contact: LIANG Chao

摘要: 针对智能车路径规划问题,文章提出了一种基于深度学习和 A*算法的新方法。通过将 卷积神经网络(CNN)和长短期记忆网络(LSTM)结合,实现了对复杂环境中最短路径的 准确预测。通过在三种不同地形环境下进行实验,文章验证了该方法的有效性和性能优势。 结果表明,该方法在路径规划时间、寻路时间、路径长度和平均速度等方面均取得了显著改 进。这一研究成果对于智能车辆的自主导航和路径规划具有重要意义,并为进一步探索基于 深度学习和 A*算法的智能车路径规划提供了新的思路和方法。

关键词: 深度学习;A*算法;路径规划;智能车

Abstract: The paper address the problem of intelligent vehicle path planning and propose a novel approach based on deep learning and the A* algorithm. By combining convolutional neural networks (CNN) and long short-term memory (LSTM), it achieves accurate prediction of the shortest path in complex environments. Through experiments conducted in three different terrain environments, the paper validate the effectiveness and performance advantages of the approach. The results demonstrate significant improvements in path planning time, search time, path length, and average velocity. This research contributes to the autonomous navigation and path planning of intelligent vehicles and provides new insights and methods for further exploration of intelligent vehicle path planning based on deep learning and the A* algorithm.

Key words: Deep learning; A* algorithm; Path planning; Intelligent vehicles