主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2022, Vol. 47 ›› Issue (14): 12-16.DOI: 10.16638/j.cnki.1671-7988.2022.014.004

• 智能网联汽车 • 上一篇    

行人过街预警方法

肖凯文 1,胡伟琪*2,谢树辉 2,徐康强 2,张晨云 2,赵子为 2   

  1. 1.重庆理工大学 汽车零部件先进制造技术教育部重点实验室,2.重庆理工大学 车辆工程学院,
  • 发布日期:2022-09-15
  • 通讯作者: 肖凯文
  • 作者简介:肖凯文(1998—),男,硕士研究生,研究方向为智能网联汽车测试及控制技术,E-mail:723499679@qq.com。
  • 基金资助:
    大学生创新创业训练计划项目(2020CX097)

Warning Methods of Pedestrian Crossing

XIAO Kaiwen1 , HU Weiqi*2, XIE Shuhui2 , XU Kangqiang2 , ZHANG Chenyun2, ZHAO Ziwei2   

  1. 1.Key Laboratory of Advanced Manufacturing and Test Technology for Automobile Parts of Ministry of Education, Chongqing University of Technology,2.College of Vehicle Engineering, Chongqing University of Technology
  • Published:2022-09-15
  • Contact: HU Weiqi

摘要: 行人是交通系统中不可或缺的一部分,也是交通场景内最灵活、复杂、多变的因素。 据统计,90%以上的交通事故都是由人为因素造成的。文章主要面向行人,研究行人过街的 预警方法。建立人车微观交互模型,提出以行人头部偏差角为基础的关注度算法。采集行人 和车辆鸟瞰视频,标定行人与车辆的二维坐标点为轨迹数据,通过轨迹数据和头部偏差角计 算出最大加速度和关注度,以最大加速度和关注度聚类出两种典型过街风格,分析不同过街 风格的预警程度。最后利用生成对抗网络模型预测出人车交互时行人的轨迹,用预测轨迹描 述行人对交互车的反应情况。该实验对研究无信号十字交叉路口行人过街预警有重要参考意 义,理论上增强了行人与车辆在无信号交叉路口的交互安全性。

关键词: 行人过街风格;人车微观交互模型;关注度算法;轨迹预测;行人过街预警

Abstract: Pedestrians are an indispensable part of the traffic system, and they are also the most flexible, complex, and changeable factors in the traffic scene. According to statistics, more than 90% of traffic accidents are caused by human factors. This paper mainly focuses on pedestrians and studies the early warning method for pedestrians crossing the street. It is established a microscopic interaction model of pedestrians and vehicles, and proposed an attention degree algorithm based on the deviation angle of the pedestrian’s head; collected a bird’s-eye view video of pedestrians and vehicles, calibrated the two-dimensional coordinate points of pedestrians and vehicles as trajectory data, and using trajectory data and heads, deviation angle calculates the maximum acceleration and the degree of attention, and clusters the two typical crossing styles with the maximum acceleration and the degree of attention. Analyze the warning degree of different street crossing styles. Finally, the generative confrontation network model is used to predict the trajectory of pedestrians during human-vehicle interaction; trace with a predicted trajectory describe the reaction of pedestrians to interactive vehicles, this experiment is useful for studying unsignalized intersections. The movement style and trajectory distribution of pedestrians crossing the street have important reference significance. Theoretically, the safety of pedestrian vehicle interaction at unsignaled intersections is enhanced.

Key words: Pedestrian crossing style; Human-vehicle micro-interaction model; Attention algorithm; Trajectory prediction; Warning for pedestrians crossing the street