主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2022, Vol. 47 ›› Issue (2): 16-19.DOI: 10.16638/j.cnki.1671-7988.2022.002.004

• 智能网联汽车 • 上一篇    

面向地下停车场的轻量级目标检测算法研究

张小俊,曹梓楼,张明路   

  1. 河北工业大学机械工程学院
  • 出版日期:2022-01-30 发布日期:2022-01-30
  • 通讯作者: 张小俊
  • 作者简介:张小俊(1980—),男,博士,教授,就职于河北工 业大学机械工程学院,研究方向:自动驾驶技术、汽车电子控制 技术等。
  • 基金资助:
    基金项目:天津市新一代人工智能科技重大专项(18ZX ZNGX00230)。

Lightweight Object Detection Algorithm for Underground Parking

ZHANG Xiaojun, CAO Zilou, ZHANG Minglu   

  1. School of Mechanical Engineering, Hebei University of Technology
  • Online:2022-01-30 Published:2022-01-30
  • Contact: ZHANG Xiaojun

摘要: 基于深度学习的目标检测算法能够取得良好的检测速度离不开高性能 GPU 硬件设备的支持。 然而,在智能车中搭载高性能、高功耗、大尺寸的硬件设备与汽车的长续航理念不符。因此,文 章以 YOLOv3 目标检测算法为基线模型进行改进,提出轻量化的目标检测模型 Mobile-YOLO,并 在采集制作的地下停车场数据集中进行训练测试。实验结果表明,提出了 Mobile-YOLO 相较于 YOLOv3,在平均精度均值略微提升的情况下,检测速度提升了 47.1%。在移动端平台 TX2 上每 秒能够检测 31 张图像。

关键词: 深度学习;目标检测;轻量化;移动端

Abstract: The object detection algorithm based on deep learning cannot achieve good detection speed without the support of high-performance GPU hardware devices. However, the hardware equipment with high performance, high power consump-tion and large size in the intelligent car does not conform to the concept of long endurance of the car. Therefore, this paper takes YOLOV3 object detection algorithm as the baseline model for improvement, proposes a lightweight object detection model, Mobile-YOLO, and conducts training and testing in the collected and produced underground parking lot dataset. The experimental results show that compared with Yolov3, the proposed Mobile-YOLO has a 47.1% increase in detection speed with a slight increase in the mean accuracy. It can detect 31 images per second on the mobile terminal platform TX2.

Key words: Deep learning; Object detection; Lightweight; Mobile terminal