主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2021, Vol. 46 ›› Issue (16): 178-180.DOI: 10.16638/j.cnki.1671-7988.2021.016.049

• 综述 • 上一篇    下一篇

强化学习在混合动力汽车能量管理上的研究综述

赵春领   

  1. 重庆交通大学机电与车辆工程学院
  • 出版日期:2021-08-30 发布日期:2021-08-30
  • 通讯作者: 赵春领
  • 作者简介:赵春领(1997—),男,车辆工程硕士,重庆交通大学机 电与车辆工程学院,主要从事混合动力汽车传动与控制方面的研究。
  • 基金资助:
    基金项目:重庆交通大学研究生科研创新项目(CYS20288);重庆 市技术创新与应用发展专项-重大主题专项项目(Z2311200003)。

Review of Research on Reinforcement Learning in Hybrid Electric Vehicle Energy Management

CHEN Xin, HOU Hongling   

  1. College of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University
  • Online:2021-08-30 Published:2021-08-30
  • Contact: ZHAO Chunling

摘要: 混合动力汽车被认为是平衡长久里程和低能耗的可行性技术途径,而能量管理策略技术是混合动力汽车的 关键技术之一,目前强化学习(RL)在混合动力汽车能量管理策略开始得到了应用,其是制定有效能量管理策略 的重要方法。文章对混合动力汽车能量管理问题进行了描述并分析总结了 RL 算法以及基于 RL 的混合算法在混合 动力汽车能量管理上的各种应用现状以及趋势。

关键词: 混合动力汽车;RL 算法;能量管理

Abstract: Hybrid electric vehicles are considered to be a feasible technical approach to balance long-term mileage and low energy consumption, and energy management strategy technology is one of the key technologies of hybrid electric vehicles. At present, reinforcement learning (RL) is beginning to be applied in hybrid electric vehicle energy management strategies, which is an important method for formulating effective energy management strategies. In this article, the energy manage -ment problems of hybrid electric vehicles are described, analyzed and summarized, and various application status and trends of RL algorithms and RL-based hybrid algorithms in the energy management of hybrid electric vehicles are summarized.

Key words: Hybrid electric vehicle; Reinforcement learning algorithm; Energy management