主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2022, Vol. 47 ›› Issue (9): 1-3.DOI: 10.16638/j.cnki.1671-7988.2022.009.001

• 智能网联汽车 •    

基于双向特征融合的交通标志识别

唐 磊   

  1. 长安大学 汽车学院
  • 出版日期:2022-05-15 发布日期:2022-05-15
  • 通讯作者: 唐 磊
  • 作者简介:唐磊(1996—),男,硕士研究生,研究方向为自动驾驶、计算机视觉,E-mail:1453713936@qq.com。

The Traffic Sign Recognition Based on Bidirectional Feature Fusion

TANG Lei   

  1. School of Automobile, Chang’an University
  • Online:2022-05-15 Published:2022-05-15
  • Contact: TANG Lei

摘要: 为了进一步提高交通标志识别的检测精度,文章提出了一种改进的 YOLO 深度学习网 络。其采用双向特征融合网络,引入较少的参数来实现更多的特征融合,并基于中国交通标 志数据集计算瞄点框。通过与基准网络进行对比,结果显示,深度学习网络的检测性能更优, 从而验证了改进网络的有效性。

关键词: 交通标志识别;YOLO 深度学习网络;双向特征融合

Abstract: In order to further improve the detection accuracy of traffic sign identification, this paper proposes an improved YOLO deep learning network, which adopts bidirectional feature fusion network, introduces fewer parameters to realize more feature fusion, and calculates target boxes based on Chinese traffic sign data set. Compared with the benchmark network, the results show that the detection performance of the deep learning network is better, which verifies the effectiveness of the improved network.

Key words: Traffic sign recognition; YOLO deep learning network; Bidirectional feature fusion