主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2022, Vol. 47 ›› Issue (7): 16-18.DOI: 10.16638/j.cnki.1671-7988.2022.007.004

• 智能网联汽车 • 上一篇    

Faster R-CNN 在车辆视频目标检测的应用

哈敏捷,陈梦玲   

  1. 长安大学 汽车学院
  • 出版日期:2022-04-15 发布日期:2022-04-15
  • 通讯作者: 哈敏捷
  • 作者简介:哈敏捷(1996—),男,硕士研究生,研究方向为交通运输工程,E-mail:609174467@qq.com。

Faster R-CNN 在车辆视频目标检测的应用

HA Minjie, CHEN Mengling   

  1. School of Automobile, Chang'an University
  • Online:2022-04-15 Published:2022-04-15
  • Contact: HA Minjie

摘要: 近年来,解决交通拥堵问题已经成为交通管理方面的重要任务,车辆检测与识别的广 泛应用也是解决交通拥堵问题的常用方式之一。基于卷积神经网络的 Faster R-CNN 逐渐成为 一种重要的图像目标检测和识别方法。该算法检测精度高、限制小,因此受到了广泛的关注。 目前常用的算法模型均是基于模型本身参数的修正,很少涉及网络结构以外的改进方式。文 章对 Faster R-CNN 车辆目标检测方法的网络结构改进、锚框提取改进及候选框参数修正方法 进行论述,特别是对数据集预处理后再训练能提高效率。经过改进的方法不仅能使网络结构 轻量化,也增加了网络的泛化能力,使 Faster R-CNN 能完成更复杂的交通环境检测任务,并 且识别精度也得到了显著提升。

关键词: 车辆检测;卷积神经网络;识别率;锚框

Abstract: In recent years, solving traffic congestion has become the first task of traffic problems, and the application of vehicle detection and identification in many aspects has become one of the more commonly used solutions. Faster R-CNN based on convolutional neural network has gradually become an important method for image object detection and recognition. The algorithm has high detection accuracy and small limitations, so it has received widespread attention. At present, the commonly used algorithm models are based on the correction of the parameters of the model itself, and rarely involve improvements other than the network structure. In this paper, the network structure improvement, anchor frame extraction improvement and candidate frame parameter correction method based on faster R-CNN vehicle object detection method are discussed, especially the retraining after preprocessing of data sets is often more effective. These methods can not only make the network structure lightweight, but also increase the generalization ability of the network, so that Faster R-CNN can complete more complex traffic environment detection tasks, and the recognition accuracy has also been significantly improved.

Key words: Vehicle detection; Convolution neural network; Recognition rate; Anchor frame