主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (19): 50-53.DOI: 10.16638/j.cnki.1671-7988.2024.019.010

• 设计研究 • 上一篇    

商用车复合式前空悬钢板弹簧设计优化

周文 1,余冬 1,尹中保 1,李骏 1,肖飞*1,王佳涵 2   

  1. 1.东风柳州汽车有限公司 商用车技术中心; 2.桂林电子科技大学 机电工程学院
  • 发布日期:2024-10-10
  • 通讯作者: 肖飞
  • 作者简介:周文(1988-),男,硕士,工程师,研究方向为商用车底盘空气悬架应用,E-mail:372170469@qq.com。
  • 基金资助:
    广西科技重大专项(AA22068001、AA23062031);广西重点研发项目(AB21196029);柳州市科技计划项 目(2022AAA0102);桂林电子科技大学研究生教育创新计划资助项目(2024YCXS007)。

The Design Optimization of the Composite Front Suspension Leaf Spring for Commercial Vehicles

ZHOU Wen1 ,YU Dong1 , YIN Zhongbao1 , LI Jun1 , XIAO Fei*1 , WANG Jiahan2   

  1. 1.Commercial Vehicle Technology Center, Dongfeng Liuzhou Automobile Company Limited; 2.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology
  • Published:2024-10-10
  • Contact: XIAO Fei

摘要: 为了解决复合式前空悬钢板弹簧可靠性验证过程中出现的断裂问题,文章从四个方面 对原方案进行优化:第一,提高材料极限应力,采用代号为 LQSP1300 的材料,屈服强度由 原来的 1 100 MPa 提升到 1 300 MPa。第二,局部结构优化,第二片后段加长 20 mm,改善钢 板弹簧第一片板簧作用时应力集中。第三,优化钢板弹簧弧高,在标定高度下,钢板弹簧反 向承载,使其在上跳过程中工作应力呈先减小后增加的趋势,提高疲劳寿命。第四,钢板弹 簧喷丸工艺优化,上下表面均进行喷丸处理,形成残余应力层,使钢板弹簧在上下跳动变形 的过程中均可以抵消一部分应力,提高疲劳寿命。通过四个方面的优化,新方案台架疲劳试 验次数提升 45.4%,同时通过了 12 000 km 道路可靠性试验。

关键词: 钢板弹簧;承载比;高应力材料;应力集中

Abstract: To address the issue of fractures occurring during the reliability verification process of the composite front suspension leaf spring, this article proposes optimizations to the original design from four perspectives: firstly, enhances the material's ultimate stress by adopting the LQSP1300 material, which elevates the yield strength from 1 100 MPa to 1 300 MPa. Secondly, optimizes the local structure by extending the rear section of the second leaf by 20 mm, alleviating stress concentration when the first leaf is in operation. Thirdly, refines the arc height of the leaf spring, ensuring that under the calibrated height, the leaf spring reverses its load-bearing direction, resulting in a trend of first decreasing and then increasing working stress during the upward jump, thus improving fatigue life. Lastly, optimizes the shot peening process of the leaf spring by applying shot peening to both the upper and lower surfaces, creating a residual stress layer that offsets a portion of the stress during the upward and downward deformation of the leaf spring, further enhancing its fatigue life. Through these four optimizations, the new design has improved its bench fatigue test cycles by 45.4% and successfully passed a 12 000 km road reliability test.

Key words: Leaf spring; Load-bearing ratio; High-stress material; Stress concentration