主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (19): 17-21.DOI: 10.16638/j.cnki.1671-7988.2024.019.004

• 智能网联汽车 • 上一篇    

障碍物运动轨迹预测方法

韩晓惠,闫力博,陈彩霞   

  1. 广州汽车集团股份有限公司 汽车工程研究院
  • 发布日期:2024-10-10
  • 通讯作者: 韩晓惠
  • 作者简介:韩晓惠(1990-),女,硕士,工程师,研究方向为智驾域决策预测规划算法,E-mail:hanxiaohui@gacrnd.com。
  • 基金资助:
    广东省科技计划项目(2023B1212020010)。

Obstacle Trajectory Prediction Method

HAN Xiaohui, YAN Libo, CHEN Caixia   

  1. Automotive Research & Development Center, Guangzhou Automobile Group Company Limited
  • Published:2024-10-10
  • Contact: HAN Xiaohui

摘要: 为提高智驾领域障碍物绕行的能力,文章提出一种基于障碍物运动轨迹预测的方法。 该方法融合视觉传感器和激光雷达传感器对障碍物的历史运动轨迹进行观测,输出带有时间 戳的障碍物位姿和障碍物速度,即从时间、空间和速度三个维度描述障碍物。基于历史观测 数据,简单循环神经网络结合最大似然估计实时预测障碍物的运动轨迹。

关键词: 轨迹预测;全局规划;简单循环神经网络;最大似然估计

Abstract: In order to improve the ability of obstacle detouring in intelligent driving field, a kind of real-time method is proposed to predict the trajectory of obstacles. The method integrates vision sensors and a lidar sensor to observe the historical motion trajectory of the obstacle to give out the pose and speed of the obstacle with time stamp, which mean that the obstacle is described from three dimensions: time, space and speed. Based on historical observation data, simple recurrent neural network with maximum likelihood estimation can predict the trajectory of obstacles in real time.

Key words: Trajectory prediction; Global planning; Simple recurrent neural network; Maximum likelihood estimation