主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (14): 35-39.DOI: 10.16638/j.cnki.1671-7988.2024.014.007

• 新能源汽车 • 上一篇    

高功率工况下氢燃料汽车排气噪声的优化研究

覃 铭,谯万成,刘 钢,王士英   

  1. 海马汽车股份有限公司
  • 发布日期:2024-07-25
  • 通讯作者: 覃 铭
  • 作者简介:覃铭(1978-),男,工程师,研究方向为产品技术创新及应用,E-mail:qinm@haima.com。

Optimization Study of Exhaust Noise of Hydrogen Fuel Vehicles under High Power Operating Conditions

QIN Ming, QIAO Wancheng, LIU Gang, WANG Shiying   

  1. Haima Automobile Company Limited
  • Published:2024-07-25
  • Contact: QIN Ming

摘要: 为解决氢燃料汽车在电堆高功率负载工况下的排气噪音问题,通过声学测试与流场仿 真交互分析,优化了消声器系统的声学性能。采用有限元法进行消声器内部流场湍动能仿真 分析,并交互使用声学测试方法进行消声器传递损失试验验证,研究发现原状态消声器在中 频段表现一般,在低高频段性能较差。通过建立消声器流场仿真模型,优化其内部结构,包 括变径多孔风管、消声内衬和减震垫等。流体仿真计算结果显示,新消声器结构流体域湍动 能明显降低,改善了消声器内部湍流现象。消声器声学测试结果显示,新状态消声器在 500~ 12 500 Hz 频段传递损失明显提高,呈现更佳的消声效果。研究结果表明,在电堆高功率负载 全频工况下,通过流场仿真与声学测试相结合的方法,能够快速优化消声器结构,提升全频 段的消声性能,提高车辆的舒适性和用户体验。

关键词: 声学测试;消声器;流场仿真;传递损失;氢燃料汽车

Abstract: In order to address the issue of exhaust noise in hydrogen fuel vehicles under high-power load conditions of fuel cell stacks, the acoustic performance of the muffler system is optimized through interactive analysis of acoustic testing and flow field simulation. Finite element method is used to simulate and analyze the turbulent kinetic energy of the internal flow field of the muffler, and acoustic testing methods are used to verify the transmission loss of the muffler. Research has found that the performance of the original state muffler is average in the mid frequency range and poor in the low and high frequency range. By establishing a flow field simulation model for the muffler, optimize its internal structure, including variable diameter air ducts, muffler lining, and shock absorber pads. The fluid simulation calculation results show that the turbulence kinetic energy in the fluid domain of the new muffler structure is significantly reduced, improving the turbulence phenomenon inside the muffler. The acoustic test results of the muffler show that the transmission loss of the new state muffler is significantly improved in the frequency range of 500~12 500 Hz, presenting a better noise reduction effect. The research results indicate that under high-power load full frequency operating conditions of the fuel cell stack, the combination of flow field simulation and acoustic testing can quickly optimize the muffler structure, improve the noise reduction performance in the full frequency range, and improve the comfort and user experience of the vehicle.

Key words: Acoustical testing; Muffler; Computational fluid dynamics; Transmission loss; Hydrogen fuel vehicles