主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (9): 29-34.DOI: 10.16638/j.cnki.1671-7988.2024.009.007

• 智能网联汽车 • 上一篇    

基于货运服务型物流园区的车辆作业调度研究

田鑫   

  1. 长安大学 汽车学院
  • 发布日期:2024-05-11
  • 通讯作者: 田鑫
  • 作者简介:田鑫(1999-),男,硕士研究生,研究方向为车辆调度、物流规划,E-mail:2021122071@chd.edu.cn。

Research on Vehicle Operation Scheduling Based on Freight Service-oriented Logistics Park

TIAN Xin   

  1. School of Automobile, Chang'an University
  • Published:2024-05-11
  • Contact: TIAN Xin

摘要: 为了解决货运服务型物流园区中车辆作业调度效率低下的问题,文章以物流园区内总 的作业时间最短为优化目标,建立车辆作业调度模型。通过引入非线性的动态惯性权重因子, 设计了改进粒子群算法进行求解,该算法能够很好地提高求解效率,以及避免陷入局部最优。 通过数值实验,验证了通过改进粒子群算法所获得的车辆作业调度方案具有很好的时间优化 效果。同时通过与标准粒子群算法和遗传算法的对比分析,验证了优化粒子群算法具有更高 的求解效率和更好的求解结果。

关键词: 车辆作业调度;智慧物流园区;改进粒子群算法

Abstract: In order to solve the problem of vehicle operation scheduling efficiency in freight serviceoriented logistics parks, this paper takes the shortest total operation time in the logistics park as the optimization goal, and establishes a vehicle operation scheduling model. By introducing the nonlinear dynamic inertia weight factor, an improved particle swarm optimization algorithm is designed to solve the problem, which can improve the solution efficiency and avoid falling into the local optimum. Numerical experiments verify that the vehicle operation scheduling scheme obtained by the improved particle swarm optimization algorithm has a good time optimization effect. At the same time, through the comparative analysis with the standard particle swarm optimization and genetic algorithm, it is verified that the optimized particle swarm optimization algorithm has higher solving efficiency and better solving results.

Key words: Vehicle operation scheduling; Smart logistics parks; Improvements to the particle swarm algorithm