主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (8): 22-29.DOI: 10.16638/j.cnki.1671-7988.2024.008.005

• 智能网联汽车 • 上一篇    

行人横穿场景下某智能接驳车 AEB 算法 优化研究

罗德意,陆 静*,王玉江,闫兴旺,杨浩东   

  1. 广西科技大学 机械与汽车工程学院
  • 发布日期:2024-04-24
  • 通讯作者: 陆 静
  • 作者简介:罗德意(1998-),男,硕士研究生,研究方向为汽车主动安全,E-mail:1579621641@qq.com。 通信作者:陆静(1973-),女,博士,教授,研究方向为振动与噪声控制、汽车主动安全,E-mail:1925370744@qq.com。

Research on AEB Algorithm Optimization of an Intelligent Shuttle Bus in Pedestrian Crossing Scene

LUO Deyi, LU Jing* , WANG Yujiang, YAN Xingwang, YANG Haodong   

  1. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology
  • Published:2024-04-24
  • Contact: LU Jing

摘要: 为应对景(园)区内行人横穿等复杂情况,提高自动紧急制动(AEB)对行人保护的 安全性。文章建立了某智能接驳车在路面激励特性和车辆特性前提下的动力学模型,提出了 基于模糊推理的智能接驳车 AEB 控制算法,通过 MATLAB/Simulink 仿真软件对控制算法进 行仿真,并将该算法应用到实车测试,与传统控制算法进行了比较试验。结果表明,接驳车 在 5.14 s 全力制动时比传统值(5.35 s)快 0.21 s;接驳车刹停后,距离行人安全距离传统值 为 1.53 m,优化值为 1.91 m,两者误差为 0.38 m,优化后更加精确安全,能有效避撞的同时 也说明了该算法的可行性。

关键词: 行人横穿场景;AEB;动力学模型;模糊推理

Abstract: To improve the safety of autonomous emergency braking (AEB) for pedestrian protection in complex situations such as pedestrian crossing in landscape (garden) area. In this paper, a dynamic model of an intelligent shuttle bus under the conditions of road excitation characteristics and vehicle characteristics is established, and an intelligent shuttle bus AEB control algorithm based on fuzzy reasoning is proposed. The control algorithm is simulated by MATLAB/Simulink simulation software, and the algorithm is applied to the real vehicle test and compared with the traditional control algorithm. The results show that at 5.14 s full braking, the shuttle is 0.21 s faster than the traditional value of 5.35 s. When the shuttle bus is stopped, the safety distance from the pedestrian is 1.53 m, the optimal value is 1.91 m, and the error of both is 0.38 m, which is more accurate and safe after optimization, and can effectively avoid collisions, and also shows the feasibility of the algorithm.

Key words: Pedestrian crossing scene; AEB; Kinetic models; Fuzzy reasoning