主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2024, Vol. 49 ›› Issue (5): 97-101.DOI: 10.16638/j.cnki.1671-7988.2024.005.019

• 测试试验 • 上一篇    

基于长短期记忆模型的跟车距离预测研究

张 胤   

  1. 长安大学 汽车学院
  • 发布日期:2024-03-14
  • 通讯作者: 张 胤
  • 作者简介:张胤(1999-),男,硕士研究生,研究方向为人车路安全,E-mail:862443499@qq.com。

Research on Predicting Following Distance Based on Long Short-Term Memory Model

ZHANG Yin   

  1. School of Automobile, Chang'an University, Xi'an 710064, China
  • Published:2024-03-14
  • Contact: ZHANG Yin

摘要: 当前不少前向碰撞预警系统以预警距离作为预警的特征量对驾驶人进行预警,因此, 提高对跟车距离的预测准度能够直观有效提高该前向碰撞预警系统的预警能力。研究通过驾 驶模拟器构建跟车场景,收集了 41 名驾驶员的跟车行为数据,按照 3:1 的比例将试验数据划 分为训练集和测试集。将驾驶人的跟车距离与速度作为长短期记忆模型的输入,跟车距离作 为模型的输出,对驾驶人的跟车距离进行了预测分析研究。结果表明,利用该数据集的模型 能够很好的预测驾驶人的跟车行为,泛化性能较好,没有过度拟合现象。并且通过输入不同 时间窗口长度的测试集发现,随着测试集长度的降低,预测结果的误差会更大。能够为提高 前向碰撞预警系统的精准度提供理论支持,从而增加驾驶员对预警系统的接受度。

关键词: 长短期记忆模型;神经网络;跟车距离

Abstract: Many forward collision warning systems currently rely on warning distance as a feature to alert drivers, so improving the accuracy of predicting following distance can effectively enhance the warning capability of such systems. In this study, a driving simulator is used to construct following scenarios, and behavior data of 41 drivers are collected. The experimental data are divided into training and testing sets in a 3:1 ratio. By using the drivers' following distance and speed as inputs to a long short-term memory model, the following distance is predicted and analyzed. The results show that the model using this dataset could accurately predict the drivers' following behavior, with good generalization performance and no overfitting. Furthermore, by testing different time window lengths, it is found that as the length of the testing set decreased, the prediction error increased. This study provides theoretical support for improving the accuracy of forward collision warning systems, thereby increasing drivers' acceptance of these systems.

Key words: Long short-term memory model; Neural network; Following distance