[ 1 ] 中华人民共和国公安部. 2018 年全国道路交通事故
预防工作取得明显成效[EB/OL].(2019-01-15)[2021-
11-20].http://www.gov.cn/xinwen/2019-01/17/content
_5358519.htm.
[ 2 ] 陈英.河北省道路交通事故灰色预测模型的构建与
应用[D].石家庄:河北科技大学,2014.
[ 3 ] FRANCESCA V, FLAVIO S, CECILIA S, et al. Risk
Factors for Fatal Road Traffic accidents in Udine,
Italy[J]. Accident Analysis & Prevention,2002, 34(1):
71-84.
[ 4 ] YAU K K, LO H P, FUNG S H. Multiple-vehicle
Traffic Accidents in Hong Kong[J]. Accident Analysis & Prevention, 2006, 38(6):1157-1161.
[ 5 ] CHANG L Y, CHU H C, LIN D J, et al. Analysis of
Freeway Accident Frequency Using Multivariate
Adaptive Regression Splines[J]. Procedia Engineering,
2012,45(2):824-829.
[ 6 ] 赵小强,李瑞敏.城市快速路交通事故持续时间预测
[J].公路工程,2010,35(1):42-44,55.
[ 7 ] 陈玉飞,魏思怡,张林.基于 GM(1,N)的道路交通事故
预测模型[J].华北理工大学学报(自然科学版),2020,
42(1):47-50.
[ 8 ] HSU B W,WANG M J.Evaluating the Effectiveness
of Using Electroencephalogram Power Indices to
Measure Visual Fatigue[J].Perceptual and Motor Skills,
2013,116(1):235-252.
[ 9 ] DU S P,MASIA B, HU S M,et al.A Metric of Visual
Comfort for Stereoscopic Motion[J].ACM Transactions on Graphics, 2013, 32(6):1-9.
[10] LI W,HE Q C,FAN X M,et al.Evaluation of Driver
Fatigue on Two Channels of EEG Data[J]. Neuroscience,2012,506(2):235-239.
[11] 吴迪.基于贝叶斯网络危险货物道路运输事故预测
模型[D].西安:长安大学,2017.
[12] YANG K,WANG X,YU R.A Bayesian Dynamic Updating Approach for Urban Expressway Real-time Crash
Risk Evaluation[J].Transportation Research Part CEmerging Technologies,2018,96(NOVa):192-207.
[13] 童璐璐.基于贝叶斯网络的高速公路交通事故严重
程度预测研究[D].北京:北京交通大学,2018.
[14] 宋贺.基于贝叶斯网络的道路危险货物罐车运输事
故预测研究[D].北京:北京交通大学,2020.
[15] GRANDE Z,CASTILLO E,MORA E, et al. Highway
an Road Probabilistic Safety Assessment Based on
Bayesian Network Models[J].Computer-Aided Civil
and Infrastructure Engineering,2017,32(5):379-396.
[16] 邓晓庆,孟祥海,郑来.基于 BP 神经网络的高速公路
事故预测模型[J].交通信息与安全,2016,34(1):78-84.
[17] 陈海龙,彭伟.改进 BP 神经网络在交通事故预测中的
研究[J].华东师范大学学报(自然科学版),2017(2):
61-68.
[18] BASSO F, BASSO L J, et al. Real-time Prediction in
an Urban Expressway Using Disaggregated Data[J].
Transportation Research Part C-Emerging Technologies,2018,86(JANa):202-219.
[19] 张蔚.基于集成学习的道路交通事故严重程度预测
方法研究[D].南京:南京理工大学,2020.
[20] SHANGGUAN Q Q, FU T, WANG J H, et al.An
Integrated Methodology for Real-time Driving Risk
Status Prediction Using Naturalistic Driving Data [J].
Accident Analysis and Prevention, 2021,156(Juna):
106122.1-106122.12.
[21] 杨文忠,张志豪,柴亚闯,等.基于 GBRT 模型的交通事
故预测[J].新疆大学学报(自然科学版)(中英文),
2020,37(1):36-43. |