主办:陕西省汽车工程学会
ISSN 1671-7988  CN 61-1394/TH
创刊:1976年

汽车实用技术 ›› 2025, Vol. 50 ›› Issue (14): 64-72.DOI: 10.16638/j.cnki.1671-7988.2025.014.013

• 测试试验 • 上一篇    

基于侧向动力学和滚动时域的轮胎-路面附着 系数非线性自适应估计

刘军 1,包浩然 2,邵梁 2*   

  1. 1.上海临港绝影智能科技有限公司;2.温州大学 机电工程学院,
  • 发布日期:2025-07-28
  • 通讯作者: 包浩然
  • 作者简介:作者简介:刘军(1989-),男,硕士,工程师,研究方向为车辆动力学控制 通信作者:邵梁(1989-),男,博士,讲师,研究方向为车辆动力学控制
  • 基金资助:
    国家重点研发计划“政府间国际科技创新合作”重点专项“智能城市公交系统车路协同感知与控制关键技 术”(2022YFE0117100);浙江省自然科学基金探索青年项目“多传感器融合下路面附着动态感知与无人驾 驶车辆紧急避障运动规划方法研究”(ZCLQ24E0501)

Nonlinear Adaptive Estimation of Tire-Road Friction Coefficient Based on Lateral Dynamics and Receding Horizon

LIU Jun1 , BAO Haoran2 , SHAO Liang2*   

  1. 1.Shanghai Lingang Senseauto Intelligent Technology Company Limited; 2.School of Mechanical and Electrical Engineering,Wenzhou University
  • Published:2025-07-28
  • Contact: BAO Haoran

摘要: 轮胎-路面附着系数(TRFC)是智能分布式驱动电动汽车精确运动控制的重要参数之 一,其估计精度和实时性极大影响着车辆控制效果。传统的基于车辆动力学的方法往往只使 用当前信息进行 TRFC 估计,由于模型不确定性和测量激励不够丰富,估计结果容易出现精 度低和收敛速度慢的问题,极大影响后续车辆底盘控制系统的控制效果。为此,文章基于车 辆侧向动力学,提出了引入过去信息的 TRFC 观测器,以此提高估计的精度和收敛速度。该 方法基于历史时刻的车辆纵/侧向车速、侧向加速度、横摆角速度和前轮转角等信息,设计了 一个同时估计历史轮胎侧向力和当前 TRFC 的非线性自适应观测器。并通过实车数据集验证 该方法的精度和收敛速度,证实其在工程应用中的可行性。该方法的提出为后续智能车辆底 盘控制提供了准确的参数基础。

关键词: 分布式驱动电动汽车;轮胎-路面附着系数估计;滚动时域;自适应观测器

Abstract: The estimation of tire-road friction coefficient (TRFC) is one of the most important parameters in the precise motion control of intelligent distributed drive electric vehicles, and its estimation accuracy and real-time performance greatly affect the vehicle control effect. Traditional methods based on vehicle dynamics often only use current information for TRFC estimation. Due to model uncertainties and insufficient driving excitation, the estimation results often suffer from lowaccuracy and slow convergence, which greatly affects the control effect of subsequent vehicle chassis control systems. To address this issue, this paper proposes a TRFC observer that introduces past information based on vehicle lateral dynamics, thereby improving estimation accuracy and convergence speed. This method is based on historical vehicle longitudinal/lateral speed, lateral acceleration, yaw rate, and front wheel angle information, and designs a nonlinear adaptive observer to simultaneously estimate historical tire lateral force and current TRFC. The accuracy and convergence speed of this method are verified through real vehicle datasets, confirming its feasibility in engineering applications. The proposed method provides an accurate parameter basis for the subsequent intelligent vehicle chassis control.

Key words: distributed drive electric vehicles; tire-road friction coefficient estimation; receding horizon; adaptive observer